

FINAL INSTALLATION, OPERATION, AND MAINTENANCE (I.O.M.) MANUAL

SMITHCO JOB NUMBER: S16286

ATLANTIC COAST PIPELINE

PO# 70301548 Item# D2.2C CASE 2 Service: GAS COOLER

Smithco Engineering 9660 Grunwald Rd., Beasley, TX 77417 (281) 396-8243 www.smithco-eng.com

<u>REV</u>	<u>REV DATE</u>	DESCRIPTION	Created by	<u>Checked</u> by
0	18-JULY-18	Issued Final	JB	GHH

THE NATIONAL BOARD

JF

BOILER & PRESSURE VESSEL INSPECTORS

Certificate of Authorization

This is to certify that

Hudson Products Corporation 9660 Grunwald Road Beasley, Texas 77417 United States

is authorized to use the R Symbol in accordance with the provisions of the National Board.

The scope of Authorization is limited as follows:

Metallic Repairs and Alterations At Shop and Field Locations

In Accordance with the National Board Inspection Code Part 3

Certification Number:

2574


Issue Date:

Expiration Date:

January 12, 2016

January 11, 2019

Executive Director

THE NATIONAL BOARD

OF

BOILER & PRESSURE VESSEL INSPECTORS

Certificate of Authorization to Register

This is to certify that

Hudson Products Corporation 9660 Grunwald Road Beasley, Texas 77417

is authorized to apply the "NB" mark and register boilers, pressure vessels or other pressure retaining items with the National Board.

The scope of Authorization is limited to items manufactured in accordance with:

ASME Designator(s):

U, S

Issue Date:

February 1, 2016

This Certificate of Authorization to Register will remain in effect as long as the manufacturing organization holds a valid Certificate of Authorization issued by the American Society of Mechanical Engineers.

Executive Director

3 of 131

CERTIFICATE OF AUTHORIZATION

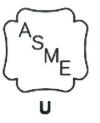
The named company is authorized by the American Society of Mechanical Engineers (ASME) for the scope of activity shown below in accordance with the applicable rules of the ASME Boiler and Pressure Vessel Code. The use of the certification mark and the authority granted by this Certificate of Authorization are subject to the provisions of the agreement set forth in the application. Any construction stamped with this certification mark shall have been built strictly in accordance with the provisions of the ASME Boiler and Pressure Vessel Code.

COMPANY:

Hudson Products Corporation 9660 Grunwald Road Beasley, Texas 77417

SCOPE:

Manufacture and assembly of power boilers at the above location and field sites controlled by the above location


AUTHORIZED: EXPIRES: CERTIFICATE NUMBER:

February 1, 2016 December 31, 2018 8,729

Board Chair, Conformity Assessment

Director Conformity Assessment

CERTIFICATE OF AUTHORIZATION

The named company is authorized by the American Society of Mechanical Engineers (ASME) for the scope of activity shown below in accordance with the applicable rules of the ASME Boiler and Pressure Vessel Code. The use of the certification mark and the authority granted by this Certificate of Authorization are subject to the provisions of the agreement set forth in the application. Any construction stamped with this certification mark shall have been built strictly in accordance with the provisions of the ASME Boiler and Pressure Vessel Code.

COMPANY:

Hudson Products Corporation 9660 Grunwald Road Beasley, Texas 77417

SCOPE:

Manufacture of pressure vessels at the above location and field sites controlled by the above location (This authorization does not cover impregnated graphite)

AUTHORIZED: Febru EXPIRES: Decei CERTIFICATE NUMBER: 8,728

February 1, 2016 December 31, 2018

Board Chair, Conformity Assessment

Director, Conformity Assessment

TABLE OF CONTENTS

1. INTRODUCTION

Receiving the Equipment Ship Loose List Document Lifting Detail Diagram Instructions Short Term & Long Term General Storage Recommendations

2. INSTALLATION

Preparing for Start Up Floating Header Bolt Removal Start Up

3. OPERATION

List of Documents in this Section (If Applicable to Project)

- (1) Specification Sheet(s)
- (2) Equipment Drawing(s)
- (3) Calculations
- (4) Weld Map
- (5) Job Specific Data (from Vendors and Other)
- (6) Spare Parts List (If Applicable)

4. MAINTENANCE

Warranty Contacts Maintenance (General) Plug Torquing Procedure

SECTION (1)

INTRODUCTION

RECEIVING THE EQUIPMENT

The **SMITHCO** Air Cooled heat Exchanger should be inspected thoroughly by receiving personnel. Check the columns, fan drive support, plenum panels, fan ring and guard, and cooling sections for damage. Any damage in transit must be noted on receiving documents presented by the carrier. Prompt claim filing will expedite compensation from the carrier.

The base unit is a shop assembled cooling unit. The columns, braces, walkway supports, and walkways may be shipped disassembled due to shipping limitations. The ship loose items with the part number or piece mark number shown as the Item number. Each ship loose item should be counted and marked as received.

To enable assembly of the components, the appropriate assembly instructions will accompany the shipment.

SHIP LIST

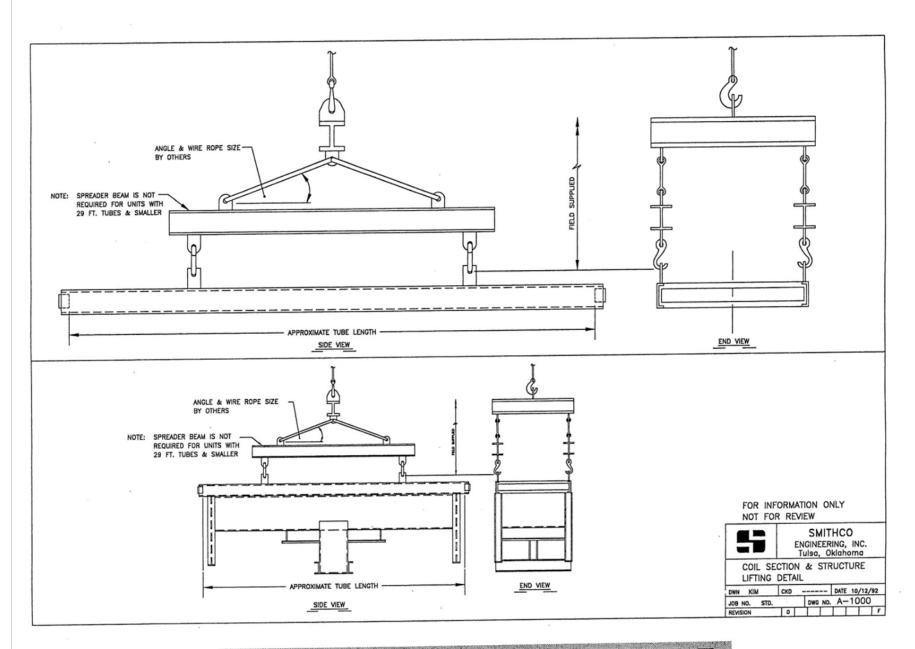
SMITHCO ENGINEERING INC.

P.O. Box 571330 Tulsa, OK 74157-1330 Phone (918) 446-4406 Fax (918) 445-2857

Ship To:

DOMINION TRANSMISSION PO BOX 25459 TBD ATTN: Texas Eastern Transmissi Date: 11/17/2017 Job #: 2016B286 Cust. PO: 70301548 Shipped Via:

Item #	ŧ	Qty Description		Weight(lbs)
	4 SM	THCO Model 1 F60-142-3 Air	Cooled Heat Exchanger	297,500 TOTAL 74,375 PER UNI
UNIT	DESC	CRIPTION: Size(ft)(Length x W) 61.5 x 14.2 x 12.2 72,	idth x Height) Weight(lbs) 000 each	
SHIPP	PING E	BEAMS: 16) 12 X 26 X 170.375	50	
LOOS	E STR	UCTURE:		
Note:	Stubb	bed Columns		
111	16	BOTTOM CENTER COLUMN	$W = \{W = 6.00 \times 15 \times 64\}$	1616
131	64	END COLUMN BRACE	{ L 2.50 x 0.25 x 110}	2368
136	96	SIDE COLUMN BRACE	{ L 2.50 x 0.25 x 110}	3552
132	320	BRACE SPACER	$\{ 2.50 \ge 0.25 \ge 2.50 \}$	320
WAL	KWA	YS:		
INLE'	T ENI	D:		
1311	4	BOTTOM LEFT COLUMN	{W 6.00 x 15 x 64}	404
1316	4	BOTTOM RIGHT COLUMN	{W 6.00 x 15 x 64}	404
1326	8	WALKWAY SUPPORT	{W 6.00 x 15 x 52}	568
1331	16	WALKWAY COLUMN BRAC	CE {L $3.00 \ge 0.25 \ge 70$ }	432
1336	4	WALKWAY FLOOR	{FLR 31 x 8.00 x 176	} 2644
1341	8	WALKWAY OUTSIDE RAIL	{L 44 x 2.50 x 176}	1960
RETU	JRN E	ND:		
2311	4	BOTTOM LEFT COLUMN	{W 6.00 x 15 x 64}	404
2316	4	BOTTOM RIGHT COLUMN	{W 6.00 x 15 x 64}	404
2326	8	WALKWAY SUPPORT	{W 6.00 x 15 x 52}	568
2331	16	WALKWAY COLUMN BRAC	CE {L $3.00 \ge 0.25 \ge 70$ }	432
2336	4	WALKWAY FLOOR	{FLR 31 x 8.00 x 176	} 2644
2341	8	WALKWAY OUTSIDE RAIL	{L 44 x 2.50 x 176}	1960
1361	4	LADDER	{ 2.50 x 0.25 x 168}	1064
A71-2	74	FABENCO SAFETY GATE		


LOOSE BOLTS:

292 422 BOLT,NUT,LOCK&(2)FLATS 5/8" X 2" A-325 GALV.

293 844 BOLT,NUT,LOCK&(2)FLATS 5/8" X 2 1/2" A-325 GALV.

LIFTING DETAIL

COIL SECTION & STRUCTURE LIFTING DETAIL

SHORT TERM AND LONG TERM STORAGE RECOMMENDATIONS

Shut down periods of an air cooled heat exchanger for an extended period of time can cause serious damage to some components under almost any conditions. Shut down in a wet or humid atmosphere can cause condensate to damage the electric motors, bearings, and unprotected machined surfaces. Drive belts can be damaged by extended exposure to either wet or dry conditions. The terms of shut down as shown below are general and based on moderate conditions. If the shutdown is on a coastal or tropical area, the conditions will require a higher level of protection for even a short storage period.

Shut Down Period – 1 Month or Less

If the unit will be idle for a period longer than one week, it will be necessary to run the unit for ten (10) Minutes every week it is idle. This short operation will keep the gears and bearings coated with oil and prevent rusting due to condensation of moisture resulting from temperature changes.

Shut Down Period – 1 to 6 Months (Moderate Conditions)

- 1. Nozzles covered and sealed with tape
- 2. Drive belts relieved of tension
- 3. Motors covered (shrink wrap and add desiccant bags) to protect against weather
- 4. Plywood covers on fin tube bundle to avoid damage to the fins
- 5. Coat all exposed machined surfaces with rust inhibiting preservative
- 6. Rotate the fan and motor shafts by hand every sixty (60) days (maximum) to circulate lubricant and avoid "brinelling" the bearings
- 7. Parts such as vibration switches, louver actuators, and all other parts boxed separately should be properly marked and stored indoors in an area designated for the cooler

Shut Down Period – 6 Months or Longer (Moderate Conditions)

- 1. Nozzles Install gaskets and seal with metal covers or blind flanges
- 2. Nitrogen purge of bundle to retard corrosion. Check the purge pressure every week and recharge as necessary to maintain five (5) to fifteen (15) psi pressure
- 3. Remove motors and drives from unit and store inside a humidity controlled building
- 4. If the electric motors have internal space heaters, they can be connected to power continuously to avoid condensate in the motors
- 5. Plywood covers on fin tube bundle to avoid damage to the fins
- 6. Coat all exposed machined surfaces with rust inhibiting preservative
- 7. Rotate the fan and motor shafts by hand every sixty (60) days (maximum) to circulate lubricant and avoid "brinelling" the bearings Project Job No : S16286-IOM 14 of 131

8. Parts such as vibration switches, louver actuators, and all other parts boxed separately should be properly marked and stored indoors in an area designated for the cooler

The above are recommendations only. All or part of the recommendations may be selected depending on length of shut down and weather conditions at the site. <u>You are advised to document all steps taken to protect the components during storage should a warranty issue arise at a later date.</u> These recommendations are made with the understanding that Smithco assumes no responsibility for deterioration on any part of the equipment due to corrosion or erosion, when such deterioration occurs after leaving Smithco premises.

SECTION (2)

INSTALLATION

PREPARING FOR START UP

1. FIELD ASSEMBLED COMPONENTS

Structural components requiring field assembly are to be assembled per the drawing furnished. All parts are marked with a piece mark and the drawing shows the location of the part by piece mark number.

After Assembly:

Check all bolts (including shop assembled unit) to confirm they are tightened. Remove any protective plywood panels from the top of the tube bundles. Remove any restraint used to keep the fan from rotating during transport.

2. BEARINGS

Rotate the fan by hand to confirm that the shaft, bearings, speed reducer and driver turn freely.

3. ELECTRIC MOTORS

Remove the condensate drain plug from each motor to drain any condensate that may have accumulated during storage. If space heaters are provided in the electric motors, activate them approximately 24 hours before starting the equipment.

4. V-BELT DRIVES

Check V-Belt tension in accordance with V-Belt tensioning in the Maintenance section of this manual.

5. GEAR BOX

Check gearbox for oil. Some gearboxes are shipped with no oil and must be filled and serviced per the Maintenance section of this manual.

6. LOUVERS

Check all louvers for ease of movement prior to operation. If they do not operate freely, loosen the frame mounting bolts and adjust the frame until the louvers move freely. Retighten the bolts.

7. FLOATING HEADER BOLTS TO BE REMOVED PRIOR TO BEING PUT IN SERVICE

If the bundle has an even number of passes, bolts attaching return header(s) to side frames must be removed. If the bundle has an odd number of passes, the bolts attaching the outlet header to the side frames must be removed. In either case, the bolts must be removed before the unit is put into service to allow thermal expansion of the tubes.

Failure to remove these bolts may result in serious damage to the bundle. See attached drawing.

8. FANS

The fan must be checked for adequate fan blade tip clearance. Move the blades around the inside of the fan ring and observe where blades have the least amount of clearance. The fan tip clearance should be approximately 1/2" for fans up to 9ft. Dia., 5/8" for fans 9 ft to 11 ft. Dia., 3/4" for fans 11 ft. Dia. and larger.

Confirm the fan blade pitch setting. Looking into the end of the fan blade, the leading edge of the blade should be down and to the left. See the maintenance section for vendor instructions to set the blade pitch.

9. HYDROSTATIC TEST

SMITHCO tube bundles are hydrostatically tested at 1.3 times the design pressure before being released for shipment. To ensure that no damage has occurred during shipment and/or erection, it is good practice to hydrostatically test the entire system, including piping, heat exchangers, pumps, etc., prior to start-up. <u>Do not use water to hydrostatically test Oil</u> <u>Coolers</u>. Movement during shipment and temperature fluctuations may cause minor seepage at the plug to plug-sheet joint. If this occurs, it will require tightening the plugs. Please contact the factory at the phone number below for advice on how to proceed.

After hydrostatic test, remove the test connections. Completely drain the bundle and, if required, dry it. Connect all process piping and auxiliary connections. Inspect all process connections as well as vent, drain, temperature and pressure connections to confirm they are plugged or connected properly.

FLOATING HEADER BOLTS TO BE REMOVED PRIOR TO BEING PUT IN SERVICE

Bolts attaching return header to sideframe must be removed prior to this unit being put in service, to allow for thermal expansion of this bundle.

Failure to remove these bolts may result in serious damage to this bundle.

START UP

WARNING! Turn off and lock out or tag power source before proceeding

- 1. Complete wiring of all electrical components including the motor(s), vibration switch(s), controls, etc. **DO NOT START MOTORS.**
- 2. Remove all hand tools and debris from the cooler plenum, drive supports, and any area containing components that will be moving when the fan is turning. Any loose debris under or around the unit may be pulled into the fan and should be removed from the area of the unit.
- 3. If the unit is equipped with a fan anti-wind milling device, it must be disengaged prior to supplying power to the electric motors or serious damage could occur.
- 4. Install all equipment guards to protect personnel from possible injury.
- 5. Switch on the fan driver momentarily to check for proper direction of rotation and fan blade orientation. A forced draft horizontal cooler fan should rotate counter-clockwise (left hand rotation) when looking at the air intake of the fan. The fan in an induced draft cooler should rotate clockwise looking at the air discharge of the fan.
- 6. Re-engage the anti-wind milling device if the unit is so equipped.
- 7. If the starting torque trips the vibration switch, turn the adjusting screw located on the right hand side of the vibration switch to the right (clockwise) for a less sensitive setting.
- 8. When the above steps are completed, start the fans and let them run for several minutes to warm the motors, bearings, etc. The fan should run smoothly and evenly in the fan ring. If there is noticeable vibration in the unit, stop and lock out the motor(s) and check the drive bolting for tightness. If necessary, tighten the bolts. If the vibration persists, check the fan blades for proper pitch and possible damage.

With the unit running smoothly, the next step is to start he process through the tube bundle(s). The following methods of introducing the process fluid into the bundle should be followed. The process start-up should minimize thermal shock to the tube bundle(s) and avoid overcooling critical services during conditions of low ambient temperature and low heat load.

- 9. Low pour point and low viscosity services should have the process fluid introduced at a low rate and gradually increased to the design flow rate with the fans off. Start the fan(s) one at a time as the process fluid starts to exceed the design operating temperature. Start the fan(s) until all fan(s) are on or the process temperature is at the design operating temperature.
- 10. High viscosity fluids and fluids with a pour point above the ambient air temperature should have the process fluid introduced rapidly to prevent over cooling the first process liquid to contact the tubes. When the design process flow is reached and the process temperature begins to exceed the design temperature, start the fan(s) one at a time until the process temperature is at the design temperature or all the fan(s) are running.

SECTION (3)

OPERATION

OPERATION

This section of the manual contains drawings and documents specific to this air cooled heat exchanger. Please consult the Maintenance section of this manual for schedules of periodic maintenance.

LIST OF DOCUMENTS IN THIS SECTION (IF APPLICABLE)

- 1. Specification Sheet(s)
- 2. Drawing(s)
- 3. Calculations
- 4. Weld Map
- 5. Weld Procedures
- 6. Vendor Specific Data

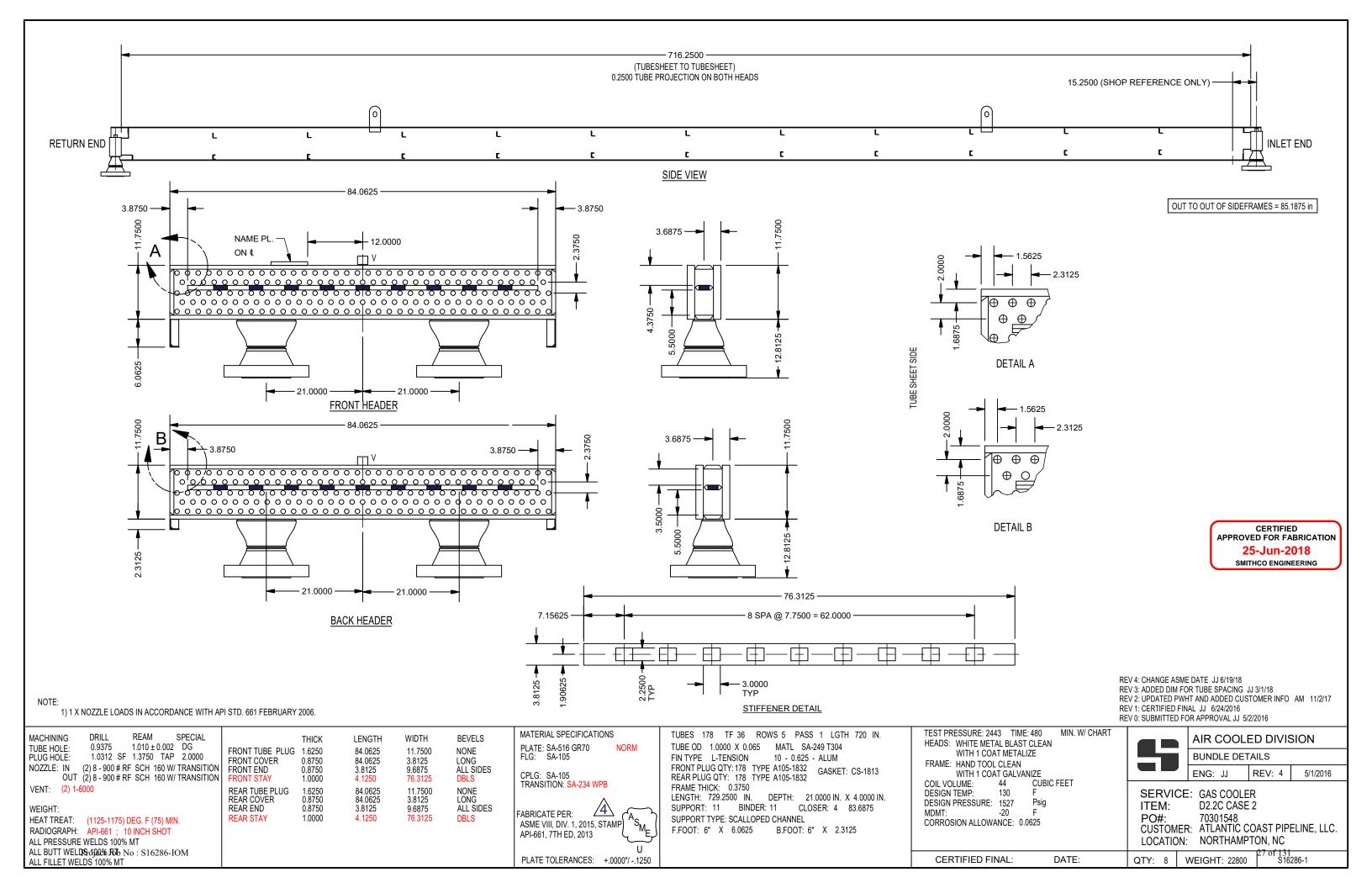
OTHER REFERENCE SOURCES

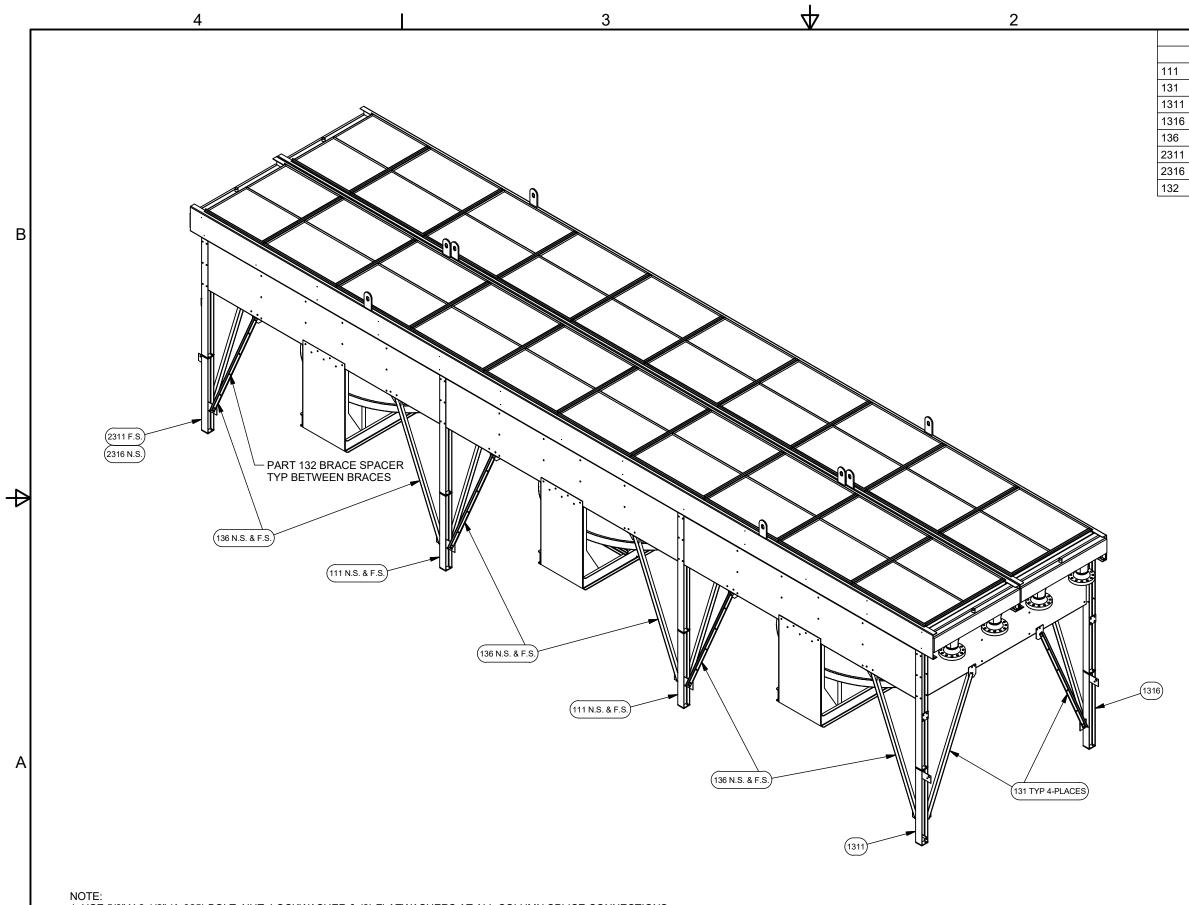
VENDOR WEBSITES	
Electric Motors:	<u>www.reliance.com</u> <u>www.sea.siemens.com/motors</u>
Fans:	<u>www.cofimco.com</u> <u>www.moorefans.com</u>
Fan Shaft Bearings:	www.dodge-pt.com
V-Belts:	<u>www.gates.com</u> <u>www.dayco.com</u>
Vibration Switches:	<u>www.fwmurphy.com</u> <u>www.metrix1.com</u> <u>www.icca.invensys.com</u> (Robert Shaw)
Spiral Bevel Gear Boxes:	<u>www.amarillogear.com</u> <u>www.hubcityinc.com</u>
Louver Actuators/Controllers:	<u>www.airtechproducts.com</u> <u>www.emersonprocess.com</u>
Louvers:	www.airtechproducts.com

SPECIFICATION SHEET(S)

SMITHCO Engineering Inc. PO Box 571330 Tulsa, OK 74157

AIR COOLED EXCHANGER SPECIFICATION SHEET

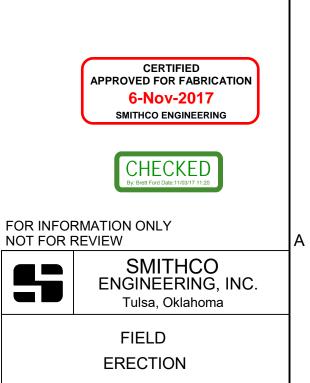

 Date
 06/06/16
 Rev
 20


 Proposal/Job No.
 2016B-286-01
 Reference
 70301548

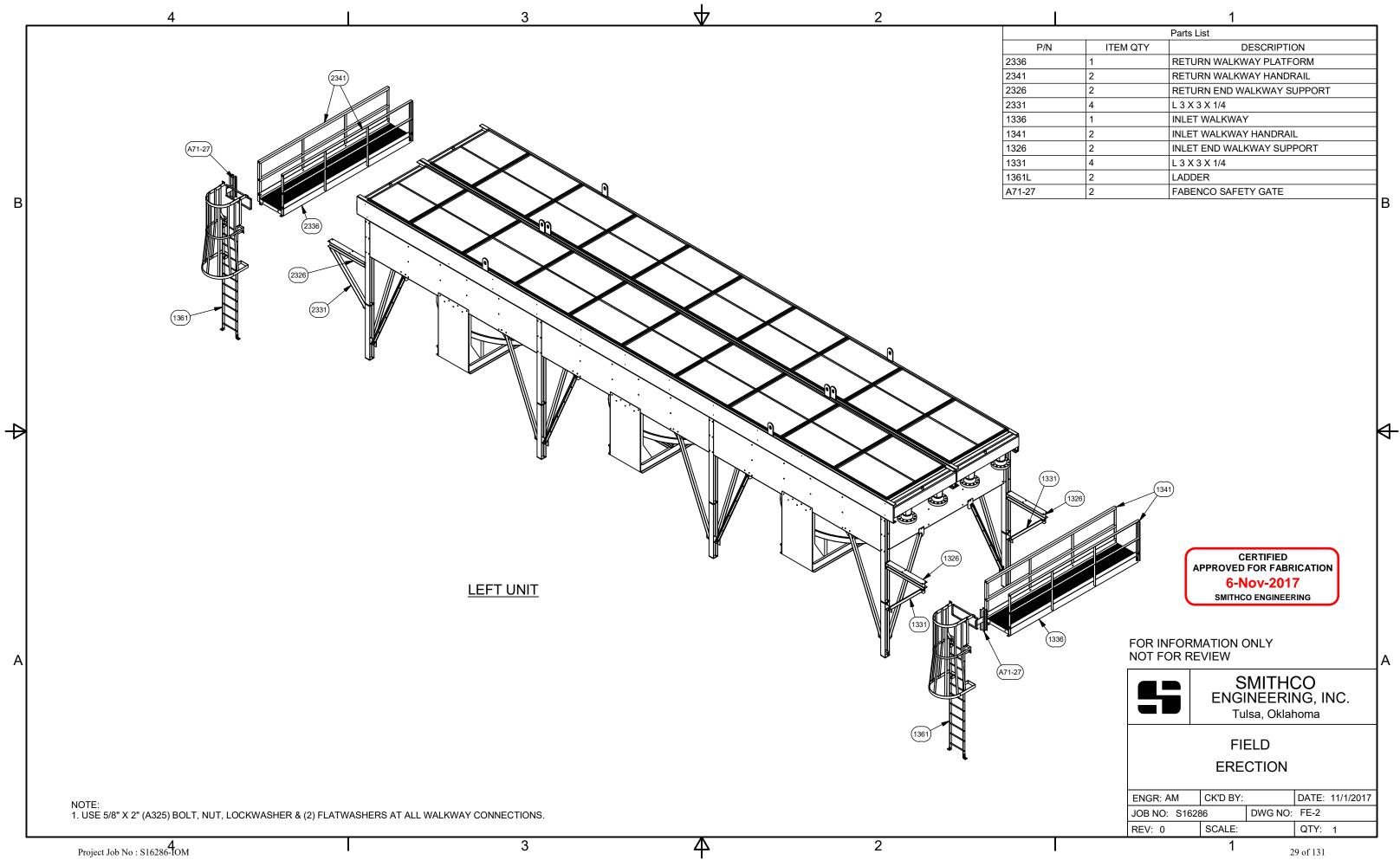
1

F	h. (918)	446-4406	5 FAX (918) 445-285	57		SP	ECIFIC	ATION S	HEET		F	eference		7	030154	8
1 (Customer		ATLAN	TIC COAST PI	PELINE							li	Item No.		D2.2C CASE 2		
2 F	Plant Loco	ation	NORTH	HAMPTON, N	С												
	ervice		GAS CO														
	Лodel			4 F60-142	2-3		Туре		FORCED			٨	lo. of Bays			4	
	urface pe	er Unit-Fi	inned Ti		-	473,924	71				Ft ²		are Tubes		22,38	5.30	Ft ²
	leat Exch					26,430,000)				BTU/H		ff MTD	14.7			Flow °F
	ransfer R		ed tube	2	3.81	20) 100)000			Bare Tube, .	Service			30.59				/Hr.Ft ² °F
8				-		F	PERFO			TUBE SIDE						= ,	
9	luid Nam	ne	NATUR	RAL GAS				-	Lethal Servi		Y	es[] N	lo [X]	IN		0	UT
	otal Fluid			Lb/Hr	1 /18	5,910			Density			c5[] i	Lb/Ft ³	4.96			5.4
10	otarrian	Lincerin	g	1			UT		Specific Hec	nt [Lia/Van]			BTU/Lb°F	/ 0.70). 4).728
	emperat	uro	۴F		5.0		0.0		Cond. Avg [P	TU/HrFt°F	70.70	/ 0.02		.720
		uie		10	5.0	0	0.0					D	°F		7 0.020))	
	iquid (an an	1 10/114	Lb/Hr	1 405 01	0 (17.0)	1 405 0	10 /1	7.0\	Pour/Freeze				۲ ۴				
	/apor	Lb/Hr	(MW)	1,485,91	.0 (17.8)	1,485,9	10 (1	17.8)	Bubble Poin								
-	locond	Lb/Hr	(MW)						Latent Heat				BTU/Lb				
	iteam		Lb/Hr						Pressure	/			Psia		1,400.0		
	Vater	· · ·	Lb/Hr				a :			op Allow/Calc	2		Psi		2.00/1		
	/isc. [Liq/	Vap]	Ср	/0.	014	/0	.014		Fouling resi			Ft	²Hr°F/BTU		0.001	U	
19 Г							PER	T	ICE DATA -		1						
	ir Quant		SCFM		,400			Lb/Hr	4,41	.6,000	Altituc			Ft		145	
21 /	ir Quant	ity/Fan	ACFM	80,	600						Тетре	erature	In	°F		60.0	
22											Тетре	erature	Out	°F		84.8	
23																	
24				1		DE	SIGN	- MATE	RIAL - COI	NSTRUCTIOI	V						
25 <u>/</u>	Design Pre	essure		1,527	Psig	Test Pressur	е	1	2,443	Psig	Desig	gn Tem	perature	130 / N	/DMT -2	0	۴F
26	UBE BUN	NDLE	1			HEADER , Ty	ре	PLUG B	ХC		TUBE	Materi	al	SA-249 T304			
27 9	ize			7.1 x 60	.0	Material		S	A-516 GR-70	N							
28 /	lo.	8	No. Tu	be Rows	5	No. Passes		1	Slope In/Ft	0.0625	OD	1.000	In	Avg. thick	0.06	50	In
29 E	Bays	4	In Par	allel In	Series	Plug			A105 1832		No./Bu	undle	178	Length	Length 60.0		Ft
30 E	Bundle	8	In Par	allel In	Series	Gasket			CS 1813		Pitch			2.3125			InΔ
31 <i>F</i>	Pass Arrai	ngement		(Top to	Bottom)	Corrosion Al	lowar	nce	0.0625	In	FIN Ty	ре	L-TEI	NSION			
32 F	?ow/Pass			5/1		Size In Nozzl	e	(2) 8.00	SCH 120 SA-23	4 WPB/WPC In	Mater	ial	AL	UM			
33 1	urbulato	rs		NO		Size Out Noz	zle	(2) 8.00	SCH 120 SA-23	4 WPB/WPC In	OD	2.250	In	Stock Thick	0.0	16	In
34 5	team Coi	il		NO		Rating & Fac	ce		900-RF SA	-105	No/In		10	Support	Chi	an. / Sta	ple
35 <i> </i>	lailscreer	ıs	YES	Bugscreens	NO	Vent	(1)	1- 6000	Drain	(1) 1-6000	Code	-ASME	VIII,Div 1	YES	Stamp	NAT	ГL BD
36 L	ouvers			NONE (0)	TI			PI		Radio	graph	YES	API-661	Heat Tre	eat	YES
37 F	rame Fin	ish		HTC 1 Coat Ga	lvanize	Header Finis	h	v	VMSB 1 Coat N	/letalize	Tube H	lole Gro	oving	YES			
38							М	IECHAN	ICAL EQUI	PMENT							
39	FAN Mfg a	& Model		MOORE 10K M	AG HD	DRIVER Typ	е		ELEC	TRIC MOTOR			SPEED R	EDUCER Type	2	V-E	BELT
	lo./Bay	3		RPM	99	S.F.		1.15	Insul/TR		SS F / B		-	5 (2) 5VX-132		VES 37.4	4/4.3
41 L		12.0		No. Blades	3	No./Bay			Frame	254T	HP	5.0	No/Bay			est Run	
	Pitch	ADJUS		Angle ^o	21.5	RPM		(3) 8		Duty		IEM	HP Ratin	q	8.20		8.7
	Blade	ALUM		Hub	GALV STEEL	Enclosure	F	EXPLOSIC		V&D	1	&D	Support	SUSPEND			
	HP/Fan, D		3.7	DBA	68	V/P/C			Space Heat			10	Vibration			RPHY VS	
ΞĽ	,, D				STRUCTUR			., .,	-,	-		-	WALK				
45 /	Aounting	,		GRADE						Inlet header		In 3	0 GRATING				
	Vindload		PSF			Seismic		2		Outlet/Retur	'n		0 GRATING				
	inish		1.51	HTC 1 Coat	Galvanize	Jeisinie		2		Drive Access			IONE	5			
4′Ľ	1111311				Galvallize				NOTES	DITVE ALLESS							
[ail Malum	·····	. 40.2						NOTES								
-	Coil Volun	. ,															
-	ssemble	a Drive, :	Structu	re & Bundles	(Within Shi	oping Restrict	lons)										
50																	
51																	
52																	
53																	
54											r						
55 <i>I</i>	Plot Area		56.	8 X 60.0	Ft	Weight Bun	dle		22,244	Lbs	Total S	Shippin	g	303,79) 5		Lbs

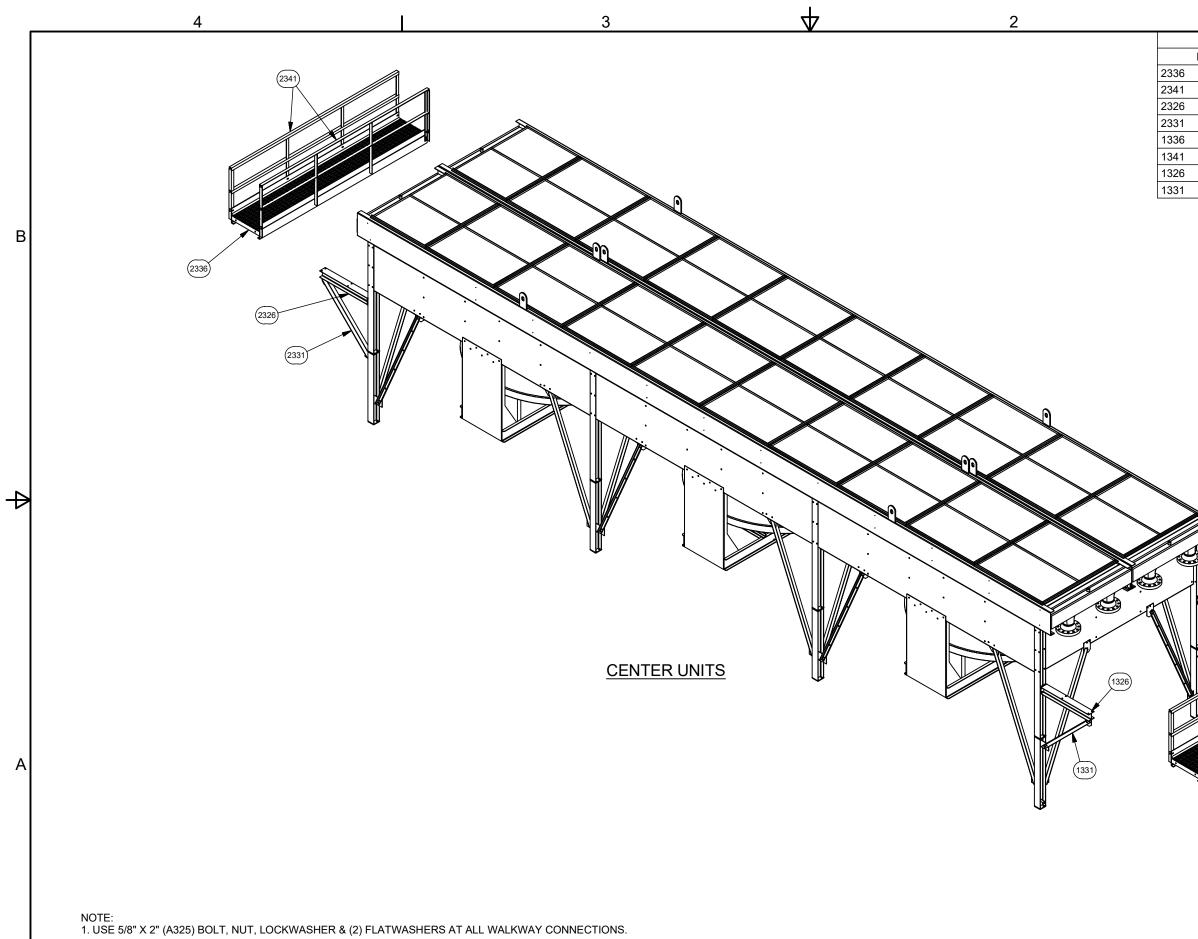
DRAWING(S)


USE 5/8" X 2 1/2" (A-325) BOLT, NUT, LOCKWASHER & (2) FLATWASHERS AT ALL COLUMN SPLICE CONNECTIONS.
 USE 5/8" X 2 1/2" (A325) BOLT, NUT, LOCKWASHER & (2) FLATWASHERS AT ALL COLUMN BRACE CONNECTIONS.
 REMOVE REAR HEADER BOLTS BEFORE START UP.

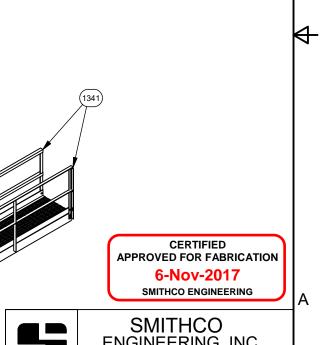
4

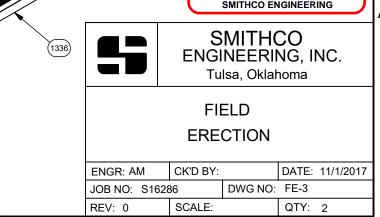

2

	1
	Parts List
ITEM QTY	DESCRIPTION
4	BOTTOM CENTER COLUMN
16	ANGLE, 2-1/2 X 2-1/2 X 1/4
1	BOTTOM LEFT COLUMN (WW) INLET
1	BOTTOM RIGHT COLUMN (WW) INLET
24	ANGLE, 2-1/2 X 2-1/2 X 1/4
1	BOTTOM LEFT COLUMN (WW) RETURN
1	BOTTOM RIGHT COLUMN (WW) RETURN
60	BRACE SPACER
	4 16 1 1 24 1 1 1


В

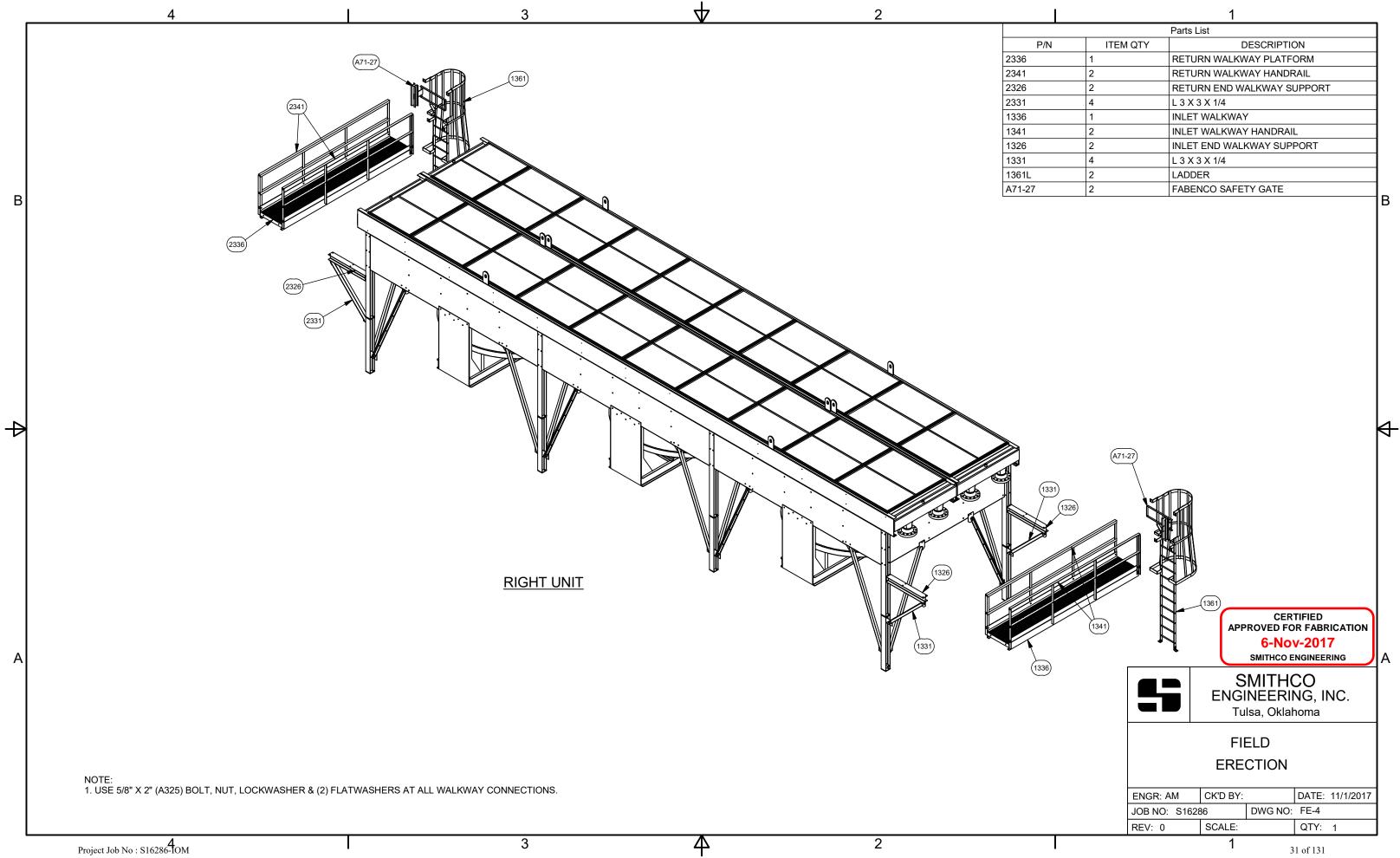
ENGR: AM		DATE:	11/1/2017	
JOB NO: \$1628	DWG NO:	FE-1		
REV: 0	SCALE:		QTY:	4
	1	2	8 of 131	


1		1				
	Parts List					
P/N	ITEM QTY	DESCRIPTION				
	1	RETURN WALKWAY PLATFORM				
	2	RETURN WALKWAY HANDRAIL				
	2	RETURN END WALKWAY SUPPORT				
	4	L 3 X 3 X 1/4				
	1	INLET WALKWAY				
	2	INLET WALKWAY HANDRAIL				
	2	INLET END WALKWAY SUPPORT				
	4	L 3 X 3 X 1/4				
-	2	LADDER				
7	2	FABENCO SAFETY GATE				


4

2

		1				
	Parts List					
P/N	ITEM QTY	DESCRIPTION				
	1	RETURN WALKWAY PLATFORM				
	2	RETURN WALKWAY HANDRAIL				
	2	RETURN END WALKWAY SUPPORT				
	4	L 3 X 3 X 1/4				
	1	INLET WALKWAY				
	2	INLET WALKWAY HANDRAIL				
	2	INLET END WALKWAY SUPPORT				
	4	L 3 X 3 X 1/4				



(1331)

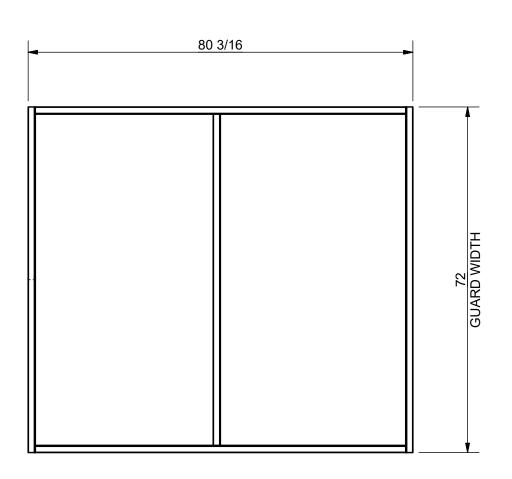
1

В

		1				
	Parts List					
P/N	ITEM QTY	DESCRIPTION				
	1	RETURN WALKWAY PLATFORM				
	2	RETURN WALKWAY HANDRAIL				
	2	RETURN END WALKWAY SUPPORT				
	4	L 3 X 3 X 1/4				
	1	INLET WALKWAY				
	2	INLET WALKWAY HANDRAIL				
	2	INLET END WALKWAY SUPPORT				
	4	L 3 X 3 X 1/4				
-	2	LADDER				
7	2	FABENCO SAFETY GATE				

CALCULATIONS

Smithco Engineering						
Customer: Atlantic Coas Service: Gas Cooler Plant: Northamptor Revision: 0 PO No: 70301548		Job: Item: Page:	S16286 D2.2C 1 of 5			
Doc. No.: H 1	Plug Header Calculations					
TUBES SA-249,TP304/304L,WLD	2015 ASME VIII, Div. 1, App. 1, Eq. (1)	API	CERTIFIED PROVED FOR FABRICATION 07-Feb-2018 SMITHCO ENGINEERING			
P Ro Sd Sa E CA t EMB t(min) MAWP(hot & corr) MAP(new & cold)	Longitudinal Weld Eff Tube Corrosion Allowance Tube Thickness Embedded Groove Depth =P*Ro / (Sd*E+0.4*P)+CA	1527 0.5 17000 17000 1 0 0.0585 0 0 0.0434 2086.66 2086.66	psig in psi psi ~ in in in in jsig psig			
NOZZLES	App. 1, Eq. (1)	2000.00	psig			
Ri ti Ro to Sd Sa E CA	Allowable Stress at 70 F	4.3125 0.7928 4.3125 0.7928 20000 20000 1 0.0625	in in in psi psi ~ in			
Inlet Pipe t(min) MAWP(hot & corr) MAP(new & cold)	SA-234,WPB/WPC,S58,SMLS =P*Ri / (Sd*E+0.4*P)+CA =(ti-CA)*Sd*E / (Ri-0.4*(ti-CA)) =ti*Sa*E / (Ri-0.4*ti)	0.3820 3632.72 3968.31	in psig psig			
Outlet Pipe t(min) MAWP(hot & corr) MAP(new & cold)	SA-234,WPB/WPC,S58,SMLS =P*Ro / (Sd*E+0.4*P)+CA =(to-CA)*Sd*E / (Ro-0.4*(to-CA)) =to*Sa*E / (Ro-0.4*to)	0.3820 3632.72 3968.31	in psig psig			
Flanges MAWP(hot & corr) MAP(new & cold)	SA-105,N ASME B16.5 at 130 F ASME B16.5 at 70 F	2164.50 2220.00	psig psig			
Designer: GJH	Date: 1/15/2018 Chkd By:		Date:			


Smithco Engineering							
Customer: Atlantic Coa Service: Gas Cooler Plant: Northamptor Revision: 0 PO No: 70301548	ı, NC	Job: Item: Page:	S16286 D2.2C 2 of 5				
Doc. No.: H	I INLET Plug Header	Calculations		Box 1			
TUBE, PLUG, AND COVE SA-516,70,N	ER PLATE App. 13, Figu	ure 13-2(a), Sk	etch (7) & 13-	9(b)			
		new & cold	hot & corr				
P CA h H a t1 t2 t22 l1 l2 l22 K k1 k2 K1 k2 K1 k2 N S d p e	Design Pressure Header Corrosion Allowance Maximum Vertical Span Horizontal Span =H/h Cover Plate Tubesheet Plugsheet =t1^3/12 =t2^3/12 =t22^3/12 =(l2/l1)a =l22/l2 =(l22/l1)a =2k2+3 =3k1+2k2 =K1K2-k2^2 Allowable Stress at 70 F & 130 F Plug Thread Pitch Dia at 1.125 Thread Horizontal Tube Pitch Ligament Efficiency of Tube/Plugsheet =1-d/p	5.5 4.125 0.7500 0.875 1.625 1.625 1.625 0.0558 0.3576 4.8039 1.0000 4.8039 12.6079 12.6079 12.6079 135.8806 20000 1.0787 2.3125 0.5335	1527 0.0625 5.625 4.25 0.7556 0.8125 1.5625 1.5625 0.0447 0.3179 0.3179 0.3179 0.3179 5.3735 1.0000 5.3735 13.7470 13.7470 13.7470 160.1050 20000 1.0787 2.3125 0.5335	psig in in in in in in 3 in 3 in 3 in 3 in			
COVER PLATE Sm (Sb)N (Sb)Q (Sm+Sb)N (Sm+Sb)Q	=Ph/4t1(act)*{4-[2+K(5-a^2)]/(1+2K)} =P(t1/2)/2411*[-3H^2+2h^2*(1+2a^2K)/(1+2K)] =Ph^2(t1/2)/12I1*(1+2a^2K)/(1+2K) Membrane + Bending at Midpoint Membrane + Bending at Corner	new & cold 4324 -7240 18213 11564 22536	hot & corr 4767 -9108 22227 13875 26994	psi psi psi psi psi			

Smithco Engineering							
Service: Ga Plant: No Revision: 0	antic Coas is Cooler orthamptor 301548		Job: Item: Page:	S16286 D2.2C 3 of 5			
Doc.	. No.: H 1	I INLET Plug Heade	r Calculations			Box 1	
	Sm (Sb)M (Sb)Q m+Sb)M m+Sb)Q	=PH/2t2(act)/e =Ph^2(t2/2)/12l2*{[1+K(3-a^2)]/(1+2K)}/e =Ph^2(t2/2)/12l2*(1+2a^2K)/(1+2K) Membrane + Bending at Midpoint Membrane + Bending at Corner	new & cold 3633 19641 5281 23274 7219	hot & corr 3892 22187 6010 26079 8087	psi psi psi psi		
STAY PLATE	t4 ep t(min)	Stay Thickness Stay Ligament & Weld Eff =Ph/2S*[2+K(5-a^2)]/(1+2K)/ep+2CA	new & cold 1 0.59	hot & corr 0.875 0.59 0.9244	in ~ in		
END PLATE	d D Z C P S E t CA t(min)	Figure UG-3 Minimum Span =3.4-2.4d/D (Max 2.5) [Per 13-4(f)] Design Pressure Allowable Stress at 70 F & 130 F [Per 13-5, Endnote 99] End Plate Thickness Header Corrosion Allowance =d*sqrt(ZCP/SE)+CA	4(g) & Eq. (3) new & cold 4.125 10 2.410 0.2 20000 1 0.875	hot & corr 4.25 10.125 2.393 0.2 1527 20000 1 0.8125 0.0625 0.8748	in ~ psig psi ~ in in		

Smithco Engineering				
Customer: Atlantic Coar Service: Gas Cooler Plant: Northamptor Revision: 0 PO No: 70301548 Doc. No.: H	n, NC	Job: Item: Page: r Calculations	S16286 D2.2C 4 of 5	Box 2
TUBE, PLUG, AND COVER PLATE App. 13, Figure 13-2(a), Sketch (7) & 13-9(b) SA-516,70,N App. 13, Figure 13-2(a), Sketch (7) & 13-9(b)				
		new & cold	hot & corr	
P CA h H a t1 t2 t22 t22 l1 l22 K k1 k2 K1 K2 N S d p e	Design Pressure Header Corrosion Allowance Maximum Vertical Span Horizontal Span =H/h Cover Plate Tubesheet Plugsheet =t1^3/12 =t2^3/12 =t22^3/12 =(l2/l1)a =l22/l2 =(l22/l1)a =2k2+3 =3k1+2k2 =K1K2-k2^2 Allowable Stress at 70 F & 130 F Plug Thread Pitch Dia at 1.125 Thread Horizontal Tube Pitch Ligament Efficiency of Tube/Plugsheet =1-d/p	2.3125	1527 0.0625 5.625 4.25 0.7556 0.8125 1.5625 1.5625 1.5625 0.0447 0.3179 0.3179 0.3179 0.3179 5.3735 1.0000 5.3735 13.7470 13.7470 13.7470 160.1050 20000 1.0787 2.3125 0.5335	psig in in in in in in^3 in^3 in^3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ psi in in in · · · · · · · · · · · · · · ·
COVER PLATE Sm (Sb)N (Sb)Q (Sm+Sb)N (Sm+Sb)Q	=Ph/4t1(act)*{4-[2+K(5-a^2)]/(1+2K)} =P(t1/2)/24I1*[-3H^2+2h^2*(1+2a^2K)/(1+2K)] =Ph^2(t1/2)/12I1*(1+2a^2K)/(1+2K) Membrane + Bending at Midpoint Membrane + Bending at Corner	new & cold 4324 -7240 18213 11564 22536	hot & corr 4767 -9108 22227 13875 26994	psi psi psi psi psi

	Smithco Enginee	ering			
Customer: Atlantic Coa Service: Gas Cooler Plant: Northamptor Revision: 0 PO No: 70301548	ı, NC	Job: Item: Page:	S16286 D2.2C 5 of 5		
Doc. No.: H	1 OUTLET Plug Heade	r Calculations			Box 2
TUBE/PLUG Sm (Sb)M (Sb)Q (Sm+Sb)M (Sm+Sb)Q	=PH/2t2(act)/e =Ph^2(t2/2)/12l2*{[1+K(3-a^2)]/(1+2K)}/e =Ph^2(t2/2)/12l2*(1+2a^2K)/(1+2K) Membrane + Bending at Midpoint Membrane + Bending at Corner	new & cold 3633 19641 5281 23274 7219	hot & corr 3892 22187 6010 26079 8087	psi psi psi psi	
STAY PLATE t4 ep t(min)	Stay Thickness Stay Ligament & Weld Eff =Ph/2S*[2+K(5-a^2)]/(1+2K)/ep+2CA	new & cold 1 0.59	hot & corr 0.875 0.59 0.9244	in ~ in	
END PLATE d D Z C P S E t CA t(min)	Figure UG-3 Minimum Span =3.4-2.4d/D (Max 2.5) [Per 13-4(f)] Design Pressure Allowable Stress at 70 F & 130 F [Per 13-5, Endnote 99] End Plate Thickness Header Corrosion Allowance =d*sqrt(ZCP/SE)+CA	4(g) & Eq. (3) new & cold 4.125 10 2.410 0.2 20000 1 0.875	hot & corr 4.25 10.125 2.393 0.2 1527 20000 1 0.8125 0.0625 0.8748	in ~ psig psi ~ in in	

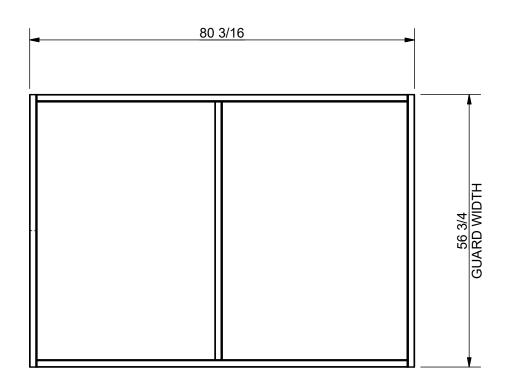
ITE	M QTY	P/N			DESCR				LENGTH (in)
5	2	H1-11	ANGLE, 1-1	/2" X 1-1/2"	X 1/8", A36				72
1	2	H1-12	ANGLE, 1-1	/2" X 1-1/2"	X 1/8", A36				77 3/16
7	1	H1-13	ANGLE, 1-1						69
2		H1-EXP11	(3/4"-#13 FL				75)		
				ISOME	2 TRIC VIE DR REFERE) • W NCE			
				N	APPROVE 6-	CERTIFIED D FOR FABR Nov-201 ICO ENGINEEF	7	By: Brett Ford	Date:11/03/17 11:21
0 RE		1/2017 FINAL DATE	CERTIFICATIO		ESCRIPTION			AM DRAV	
	I	I			REVISION H	ISTORY		1	
	NSIONS ARI RANCES AF <u>DECIM</u> X.	<u>ALS</u> ±.06 X.°	ANGLES : ± 2°		S		O ENG I ulsa, Oklah		NG
	.XX :: .XXX ::	± .005 <u>F</u> ALL	K° : ± .5° FRACTIONS : ± 1/16	TITLE	HAII SC		PANEL	TYPF	А
BE TRA INDIRE PRODU	DED, REPRODU CTLY, THAT IS D CTS CORPORAT	ALL BE RETURNED ON DI CED, OR USED IN ANY WA ETRIMENTAL TO THE INT ION. COPYRIGHT © HUDS GHTS RESERVED.	AY, DIRECTLY OR ERESTS OF HUDSON			- 		SHEET 1	
	ERIAL:			B DO NOT MANU	S162	86	H1-A	I	0
				ALTER OR SC	ALE WT:	(N/A) lbs	PROJECTION		DALE 1:20

GENERAL NOTES:

1. STANDARD FLATTENED EXPANDED METAL SHEET SIZE USED BY SMITHCO IS 72" X 120".

2. PRIOR TO WELDING; REMOVE ALL BURRS AND SHARP EDGES.

3. ALL SUPPORT FRAME ANGLE MEMBERS TO BE JOINED TOGETHER WITH FULL FILLET WELDS.

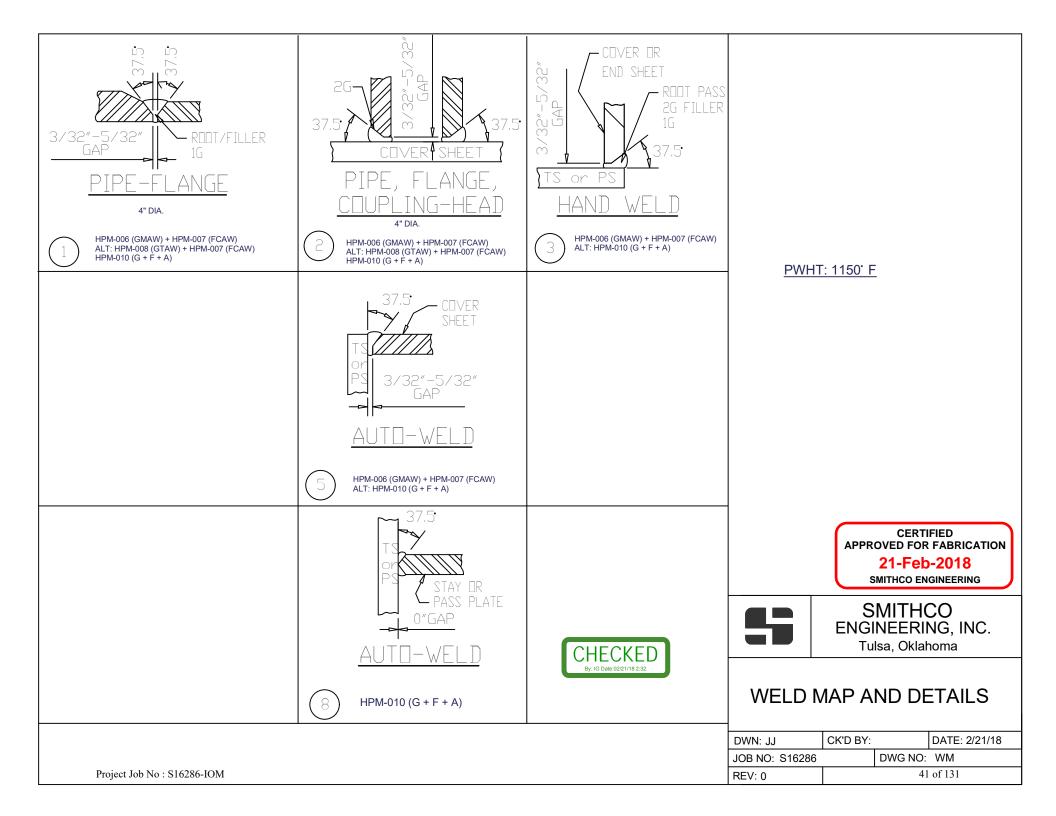

4. ALL FINISHED WELDS TO BE CLEAN AND FREE FROM SPLATTER.

5. ATTACH TO BUNDLE SIDEFRAMES USING HEX WASHER HEAD SELF-DRILLING SCREWS 1/4" DIA. X 1" LONG (ITEM 6).

6. USE CUSTOM GUARD WIDTHS AS REQUIRED TO COMPLETE GUARD SECTION FOR BUNDLE.

					.XXX : ± .005 FRACTIONS	
1	Each		ANGLE, 1-1/2" X 1-1/2" X 1/8", A36	7	ALL : ± 1/16	
1	Each		ANGLE, 1-1/2" X 1-1/2" X 1/8", A36	5	THIS DOCUMENT IS THE PROPERTY OF HUDSON PRODUCTS CORPORATION AND SHALL BE RETURNED ON DEMAND. IT SHALL N BE TRADED, REPRODUCED, OR USED IN ANY WAY, DIRECTLY OR	ют
1	Each		(3/4"-#13 FLATTENED EXP. MTL, 72 X 80.1875)		INDIRECTLY, THAT IS DETRIMENTAL TO THE INTERESTS OF HUDSO PRODUCTS CORPORATION. COPYRIGHT © HUDSON PRODUCTS	
1	Each		ANGLE, 1-1/2" X 1-1/2" X 1/8", A36	1	CORPORATION - ALL RIGHTS RESERVED.	
QTY	UNIT	STOCK NUMBER	MATERIAL DESCRIPTION	FOR ITEMS		
Р	roject Job No :	S16286-IOM	CUT MATERIAL QTY LIST	·	COATING:	DO NC ALTE

ITEM	QTY	P/N			DESCRIPTION		LENGTH (in)
5	2	H1-14	ANGLE, 1-1	/2" X 1-1/2"			56 3/4
1	2	H1-12	ANGLE, 1-1	/2" X 1-1/2"	X 1/8", A36		77 3/16
7	1	H1-15	ANGLE, 1-1	/2" X 1-1/2"	X 1/8", A36		53 3/4
2	1	H1-EXP13	(3/4"-#13 FL	ATTENED	EXP. MTL, 56.75 X 8	0.1875)	
					2 2 2 2 2 2 2 2 2 2 2 2 2 2		
				AI	CERTIFIED PPROVED FOR FABRICA 6-Nov-2017 SMITHCO ENGINEERING		CHECKED By: Brett Ford Date: 11/03/17 11:21
0	11/1/2		CERTIFICATIO				AM
REV	DA	TE			ESCRIPTION REVISION HISTORY		DRAWN APPR'D
		OTHERWISE SP	ECIFIED				
	IONS ARE I NCES ARE:					CO ENGINI	
Х.	DECIMAL : ± .(<u>s</u> 06 X.° ⁴	ANGLES : ± 2°		-	Fulsa, Oklahom	าล
.)	X :±.(XX :±.()3 .X°	: ± 1° (° : ± .5°	TITLE			
	XXX : ± .(005 <u>F</u> ALL ROPERTY OF HUDSON	RACTIONS : ± 1/16		HAILSCREEI	N PANEL T	YPE B
BE TRADED), REPRODUCED Y, THAT IS DETR), OR USED IN ANY WA RIMENTAL TO THE INTE	ERESTS OF HUDSON				· — -
PRODUCTS	CORPORATION	I. COPYRIGHT © HUDS	SON PRODUCTS	SIZE PRO	DJECT DRA	WING NUMBER	SHEET 1 OF 1 REV
COATIN	G:			DO NOT MANU	ALLY EST. (N/A) Ibs) 39 of CALE 1:20
				ALTER OR SC	ALE WT: (IN/A) IDS	PROJECTION: V	



GENERAL NOTES:

- 1. STANDARD FLATTENED EXPANDED METAL SHEET SIZE USED BY SMITHCO IS 72" X 120".
- 2. PRIOR TO WELDING; REMOVE ALL BURRS AND SHARP EDGES.
- 3. ALL SUPPORT FRAME ANGLE MEMBERS TO BE JOINED TOGETHER WITH FULL FILLET WELDS.
- 4. ALL FINISHED WELDS TO BE CLEAN AND FREE FROM SPLATTER.
- 5. ATTACH TO BUNDLE SIDEFRAMES USING HEX WASHER HEAD SELF-DRILLING SCREWS 1/4" DIA. X 1" LONG (ITEM 6).
- 6. USE CUSTOM GUARD WIDTHS AS REQUIRED TO COMPLETE GUARD SECTION FOR BUNDLE.

					XXX : ±.005 FRACTIONS	1
1	Each		ANGLE, 1-1/2" X 1-1/2" X 1/8", A36	7	ALL : ± 1/16	_
1	Each		ANGLE, 1-1/2" X 1-1/2" X 1/8", A36	5	THIS DOCUMENT IS THE PROPERTY OF HUDSON PRODUCTS CORPORATION AND SHALL BE RETURNED ON DEMAND. IT SHALL N BE TRADED. REPRODUCED. OR USED IN ANY WAY. DIRECTLY OR	от
1	Each		(3/4"-#13 FLATTENED EXP. MTL, 56.75 X 80.1875)	2	INDIRECTLY, THAT IS DETRIMENTAL TO THE INTERESTS OF HUDSO PRODUCTS CORPORATION. COPYRIGHT © HUDSON PRODUCTS	
1	Each		ANGLE, 1-1/2" X 1-1/2" X 1/8", A36	1	CORPORATION - ALL RIGHTS RESERVED. MATERIAL:	
QTY	UNIT	STOCK NUMBER	MATERIAL DESCRIPTION	FOR ITEMS		
1	Project Job No :	S16286-IOM	CUT MATERIAL QTY LIST		COATING:	ALTER

WELD MAP WELD PROCEDURES

WELD PROCEDURES

CUSTOMER: Atlantic Coast Pipeline

SMITHCO JOB NO: 2016B286

WELD PROC. NOS.: HPM-006 REV.1 GMAW-PWHT-No CVN HPM-007 REV.1 FCAW-PWHT-No CVN HPM-008 REV.1 GTAW-PWHT-No CVN HPM-010 REV.0 (G+F+A) PWHT

REVISION:

0

DATE: 02-Mar-2018

合合				HPM			w	PS No.		HPM-006	
153			Maldine D	readure Crea	ification (M/DS)			Rev:	1	Date:	12/04/2015
	-		weiding Pi	roceaure Spea	cification (WPS)			Page:	1	of:	2
Supportin	ig by PQR No	(e)	006	Bv	: LUIS SARIÑANA	i					
			IETAL ARC WELD (-							
	process(es):			Ginaw w/FWHT),						-	
and the second division of the second divisio		atic, Semi-automa	lic, Machine):		SEMI-AUTOMATIC					-	
JOINT DE	TAILS (QW-4	02):									
Joint Desi	ing:	Groove and Fille			_	Joint	t Details:				
		(X) Single	(X) Double We	ld				t Opening: - 3/16" \	Neld Joint	Welded From O	na Sida
Backing:		(X)Yes	(X)No							Welded From B	
Backing N	Aaterial:	*Weld Metal, P1 I	Material, Copper, Co	eramic.	-						
		(X)Metal	(-) Nonfusing-	Metal							
		(-) Nonmetallic	(-) Other								
Retainers	:	(-) Yes	(X) No								1
ŀ										D Po	violed /
											tnessed
Other:	Base Metal	(One side)								Å	A I
	Weld Metal	(Other side)									4,2015
	Permanent	Backing Bars, Rin	gs, Straps, etc. Sha	ll not be Used.							865
					an and it is a d					- HS	BGS
BASE ME	TALS: (QW-4	03)					POSITIONS: (QW-405)			
P No	. 1	Group No. 1&	2 To	P No	. 1 Group No.	122	Position of Gr	20042		All	
	pecification:			Any P1	Group No.	1 4 2	Position of Fil	-		A//	
			_		-			-			. T
Type or G		Any		Any			Welding Prog				
Thickness	s range:	Groove: <u>3/16</u>		1"	-		-	II (X)		Downhill (-)	
		Fillet: <u>All</u>	То	All	-		Other:	R1 V.		N/A	
Pipe Diam	neter Range:	Groove:	2 7/8" O.D. or (Greater	-		PREHEAT: (Q	W-406)			
		Fillet: All	То	All	_		Preheat Temp		Min.	50°F	
Chemical	Analysis:						Interpass Terr	np.	Max.	420°F	
Mechanic	al Property:				· · · · · · · · · · · · · · · · · · ·	1.1	Preheat Maint	enance.		NONE	
Other:	All Weld Pa	ss to be Less than	0.5" Thick (QW-40:	3.9)			Other:			N/A	
	If Base Met	al Exceeds 3/8", th	en GMAW is Restrie	cted to Root Pass	s Only.	н. С					
FILLERM	ETALS: (QW-	404)			POSTWEL	D HEAT TH	REATMENT: (0	QW-407)			
				IAW	Туре:				Stre	ss Relief	
SFA Spec AWS Clas				5.18 70S-6	Temperat Time Ran			1 He / I		F Minimum ness, 1 Hour mil	
F-Number	:			6	Other:				N/A	iess, i noui ini	mium
A-Number Size of Fil				1 0.045"	GAS (QW-	408)					
	Trade Name:		Washington A	lloy and others]		Gas(ce)		Misture		Elow Bets
Flux Trade	e Name:		N	I/A			Gas(es)		Mixture		Flow Rate
Flux Type Electrode	: Flux (Class):			1/A 1/A	Shielding:	-	CO 2		99.99%		20 - 50 CFH
	al Thickness:	Groov	re: 3/16'	" to 1"	Trailing:	_	NONE		NONE		NONE
		Fill	et:	A//	Backing:		NONE		NONE		NONE
Other:			Combination Should	l be	_	-					
	Recorded In No addition		iller Metal. (QW-404	.24/27)	Other:				N/A		
			ition, C-0.08% (0.20 3% (1.00% Max) (QV		_						
		t Job No : S16286-			-					43 of 131	

		Solarian.		НРМ		e el contrariory.	WPS No.	HPM	-006
		14	Inding Brog	edure Specificat			Rev.:	1 Date:	12/04/2015
		•	relating Proc	edure Specificat			Page:	2 of:	2
ELECTRICAL C	HARACTERIS	TICS: (QW-409)							
Current:	AC (-)	DCEP(X)	DCEN (-)	PULSED (-)					
Amps:	<u></u>	180 - 24	O AMP.						
Volts:		24 - 28	VOLT.	<u> </u>					
Transfer Mode:									
		Short Circuitin	g: (-)	Globular (X)	Spray: (-)				
Electrode Wire	Feed Speed Ra	ange:	As R	eq`d.					
Tungsten Electr	rode Size and 1	Гуре:							
		Size:	N/A	Туре:	N/A	_			
Other:	·				N/A				
TECHNIQUE: (Q									
	200-410)								
					e Bead: <u>Stringer/Weave,</u> up Size: <u>3/8" Dia. to 3/4" I</u>		ad Width.		
		Initial and Inf	erpass Cleanin		g, etc.): <u>Wire Brushing, G</u>		Chipping.		
					ouging: *Grinding and Ca				
			_		illation: N/A				
				tact Tube to Work Di					
				le or Single Pass (pe ultiple or Single Elec		· · · · · · · · · · · · · · · · · · ·			
					eening: Not Allowed.				
					cesses: Not Allowed. (Qu	N-410.64)			
	Other:				From Dirt, Oil and Rust.				
					nternal and External Adja of 1/16" Thickness to Re			Prior to Weldir	ia
		* Postweld Hea						<u></u>	<u>.</u>
		r		r	· ·				
Weld Layer(s)	Process	Filler	Metal	C	Surrent	Volts	Travel Speed (IF		04
·····		Class	Dia.	Type Polarity	Amp.	Voits	Traver Speed (in	- 1017	Others
ALL	GMAW	ER70S-6	0.035"	DCEP	180 - 200	24 - 26	VARIABLE		
ALL	GMAW	ER70S-6	0.035"	DCEP	180 - 240	24 - 28	VARIABLE		
				· · · · · · · · · · · · · · · · · · ·				_	
						and the second			
							<u> </u>		
									······
						<u> </u>	e		
Additional	untions								
Additional Instru	ictions:								
				· · · · · · · · · · · · · · · · · · ·					
							· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	S16286-IOM			······································		······································	44 of 1	21

			НРМ				PQR No.		006	
	1	Procedure Q	ualification R	ecord (Rev.:	1	Date:	12/04/2015
	•	TUGGUUIG 💘	uanneauon ry		,ruk)		Page: _	1	of:	2
Reference WPS No:	HPM-006	Rev.:	1							
Welding process(es):	GAS METAL	L ARC WELD (G	MAW)	,						
Types (Manual, Automat	ic, Semi-autom	atic, Machine):		SEMI-A	UTOMATIC					
JOINTS: (QW-402)			······································					<u></u>		
				J	oint Details:					
					Joint Type:	Single V				
	60 [°]				Bevel Angle:	60° in A 1/16				
					Land:	1/16				
<u>г</u>	~	<u>`</u>			Root Opening:	1/0				
			1/2							
1/16	······		¥							
	1/8"									
	JOINT DESIGN	1								
BASE METALS (QW-403))		· · · · · · · · · · · · · · · · · · ·	- 1.1	POSTWELD HEAT	TREATME	NT (QW-407)			
						·				
Material Specification:			SA-516		Туре:				ess Relief	
Type or Grade:			Gr 70		Temperature:	-			123 °F	
PN		То	P No:	1	Time Range:	_			15 Minutes	
Thickness of Test coupo			1/2"		Other			N/A		
Diameter of Test coupon	:		N/A		4	_				
Other:		N/A			1					
FILLER METALS: (QW-40	141				GAS(ES): (QW-408					
	14)				GA3(E3): (411-400	5)	(% /Mi		Plass Data
							Gas(es)	% (Mi)	Kture)	Flow Rate
		GI	MAW	1	Shielding:	-	CO 2	99.9	9%	30 CFH
SFA Specification:			A 5.18	i i	Trailing:	-	NONE	NO		NONE
AWS Classification:			70S-6	1	Backing:	-	NONE	NO		NONE
F-Number:			6	i i		-				
A-Number:			1	1	ELECTRICAL CHAI	RACTERIS	TICS (QW-409)			
Size of Filler metal:		0.(035"	1						
Electrode Trade Name:		Washington /	Alloy and others	1	Current:		DCEP			
Filler Metal Form:			VIRE ONLY	1	Polarity:		REVERSE			
Flux Trade Name:			V/A	1	Amps:		200 AMP			
Flux Type:		<u> </u>	V/A	l	Voits:		25 VOLT.		<u></u>	
Electrode Flux (Class):			V/A	l	Mode of Metal Tran	nsfer: (Globular			
Weld Metal Thickness:		1"/	MAX.	l	1	-	<u> </u>			
				1	Tungsten elect. Siz	ze:			N/A	l
Other: <u>No additi</u>	onal Suppleme	ntal Filler Metal	I. (QW-404.24/27	2	Type:		······································		N/A	
					Other			N/A		
POSITION (QW-405)										
POSITION (QW-405)					TECHNIQUE (QW-4	410)				
Position of groove:			3G		Travel Speed:	4	13 IPM			
Position of Fillet:			 N/A		Have opecu.	<u> </u>	13 IF 10			
Vertical progression:					String or Weave Be	ead: I	Weave Bead Wid	dth 3/8".		
						<u>-</u>				
Uphill ()	K)	Downhill ()		Multipass or single	e pass: _ <u>M</u>	Multipass.			
Other:		N/A					_			·
					Number of Electroc	des:	Single.			
PREHEAT (QW-406)								··		
Destant Temporatura / m	< \		EQ OF		Use of thermal pro	cesses: <u>r</u>	Not Used (QW-4	410.64)		
Preheat Temperature(m Interpass Temperature(<u>50 °F</u>							
interpass remperature (i	Nax.)		420 °F		Other:			N/A		
Other:		N/A								
Project Jo	ob No : S16286-I	OM							45 of 1.	31

&	an wa constant allow		wig Xardi -		HPM			and a straight of the straight	PQR No.	e generative ege	006
					<u> </u>				Rev.:	1	Date: 12/04/2015
			Proc	edure G	ualificatio	on Record (PQR)	Page:	2	′ of	
and the second se	I w	/idth	Thick	mess		ISION TEST (C Area			· · · · · · · · · · · · · · · · · · ·		T
Specimen no.	mm	in	mm	in	mm ²	1	Ultimate To	otal Load	Ultimate L	Jnit Stress	Type of Failure & Location
					mm	(sq in)	Kg	(Pounds Lbs.)	Psi	Мра	
<u></u>		0.750		0.501		0.3758		29,807	79,316		BASE METAL
<u>T2</u>		0.752		0.498		0.3745		31,064	82,948		BASE METAL
	.				ļ		· · · · · · · · · · · · · · · · · · ·				
		<u> </u>				l					
					GUIDE	D BEND TEST	(QW-160)			-	
Specimen No.	Туре	of Bend	Figur	e No.		Result				Remark	
D1	Face B	end Test	QW 46	2.3 (a)		SATISFACT	ORY	WIT	HOUT SURF	ACE DISCO	NTINUITY
D2	Face B	end Test	QW 46	2.3 (a)		SATISFACT	ORY	WIT	HOUT SURF	ACE DISCO	ONTINUITY
D3	Root B	end Test	QW 46	2.3 (a)		SATISFACT	ORY	WIT	HOUT SURF	ACE DISCO	NTINUITY
D4	Root B	end Test	QW 46	2.3 (a)		SATISFACT	ORY	WIT	HOUT SURF	ACE DISCO	ONTINUITY
					тноц	GHNESS TEST	(OW-170)				
No. Especimen	Notat	Location	Specim	en Sizo	Test Temp.		ict Values	% Shear	Mils Lat.	Drop W	/eight Break (Y/N)
No. Especimen	Noton	Location	Specim	en Size	Test Temp.	Ft / Ibs	Joules	% Snear	Expansion	Break	No Break
						1					
Other:						s _					
	• • • • • • • • •			•							
0:4-	Weld	Weld	Filler	Metal	Current			Travel Speed			
Side	Layer / pass	Process	AWS Class.	Dia.	Type & Polarity	Amps. (A)	Volts. (V)	(IPM)		Other	S
	1	GMAW	ER70S-6	0.035"	DCEP	180 - 200	24 - 26	VARIABLE			
	2	GMAW	ER-70S-6	0.035"	DCEP	180 - 240	24 - 28	VARIABLE			
						· · · · ·					
					-		~				
							- <u> </u>				4
								· · · · · · · · · ·			
Welder's Name:			lo Robledo				Clock No	o: <u>13</u>	65	Stamp No:	06
Test conduced b	•		ir Gonzalez								
Laboratory Test	no.:		05/12 AND	CISA-PT-0	5/12						
Test Date:		March 1	5, 2011		-			۰.	e a e		
We certify that th of ASME Section		nts in this	record are c	orrect and	that the Test	welds were pr	epared, welded a	nd tested in acc	cordance wit	h the require	ements
Manufacturer:	HUDSON		TS DE MEX		DECV						
manalaviditi.				J.A. I	<u></u>	-					
Prep´d By:	LUIS SA	RIÑANA	. The			Prep'd Date:	December	04, 2015			
			and the second se								

				НРМ				WPS No.		HPM-007	
ズ			Welding F	Procedure Spe	cification (WPS)			Rev:	1	Date:	12/04/2015
			-			-		Page:	1	of:	2
Supporting by PQR No	o. (s)		007	Ву	: LUIS SARIÑANA						ь.
Welding process(es):	-	FLUX CO	RED ARC WEL	D (FCAW, w/PWH	7)			· · - »		_	
Types (Manual, Autor	atic, Semi-a	utomatic,	Machine):		SEMI-AUTOMATIC					-	
JOINT DETAILS (QW-4	102):										
Joint Desing:	Groove an	d Fillet				Joint	t Details:				
	(X) Singl	e	(X) Double W	leld			R	loot Opening: 0 - 3/16" W	Ind Indust	Welded From O	no Sido
Backing:	(X)Yes		(X)No				·			Welded From B	
Backing Material:	*Weld Met	al, P1 Mat	erial, Copper, C	Ceramic.	_						
	(X)Metal (-)Nonm		(-) Nonfusing (-) Other	-Metal							
Retainers:	(-) Yes		(X) No								/
										Re	viewed
											SH-
	(One side)							· · · · · · · · · · · · · · · · · · ·			E4. 2015
	l (Other side) Backing Ba		Straps, etc. Sh	all not be Used.							865
										HS	B GS
							DOCITION				
BASE METALS: (QW-4								S: (QW-405)			
P No			_	PNG	5. <u>1</u> Group No.	1 & 2				A!!	· · · · · · · · · · · · · · · · · · ·
Material Specification	: _	Any P1	-	Any P1			Position o	_		All	
Type or Grade:		Any	то	Any	_		-	rogression		-	
Thickness range:	Groove:		- То То	<u> </u>	<u></u>			Jphill (X)		Downhill (-)	
	Fillet:		То	<u>AII</u>	·	4	Other: _			<u>N/A</u>	
Pipe Diameter Range:	Groove:		2 7/8" O.D. or	Greater	_			: (QW-406)			
	Fillet:	All	- То	AII	_		Preheat Te	-	Min.	50°F	
Chemical Analysis:							Interpass	-	Max		
Mechanical Property:	<u> </u>						Preheat M	aintenance.		NONE	
Other: <u>All Weld P</u>	ass to be Les	s than 0.	5" Thick (QW-4	03.9)			Other:			N/A	
FILLER METALS: (QW	/-404)				POSTWEI	D HEAT TR	REATMEN	Г: (QW-407)			
			G	MAW	Туре:		_		Stre	ss Relief	
SFA Specification: AWS Classification:				FA 5.20 71T-1C	Temperat Time Ran		-	4 4+/1		F Minimum ness, 1 Hour mi	nimum
F-Number:				6	Other:		_		N/A		
A-Number: Size of Filler metal:				71T-1C ", 0.045"	GAS (QW	-408)					
Electrode Trade Name Filler Metal Form:	: :			Alloy and others X CORED			Gas(es)		Mixture		Flow Rate
Flux Trade Name:				N/A N/A	Shielding		CO 2		99.99%		
Flux Type: Electrode Flux (Class				N/A		• •					20 - 50 CFH
Weld Metal Thickness	:	Groove: Fillet:		6" to 1" All	Trailing:		NONE	· · · · ·	NONE	<u>u</u>	NONE
Other: Each Base	Metal-Filler	Metal Co	mbination Shou	Id be	Backing:		NONE		NONE		NONE
Recorded	Individually.		er Metal. (QW-40		Other:				N/A		
Weld meta	l Chemical C	ompositi	on, C-0.08% (0.	20% Max),	_						
	<u>(1.60% Max)</u> ect Job No : '		5 (1.00% Max) (G OM	(vv-404.5)	-					47 of 13	1
110		<u></u>	0.171								1

<u></u>				НРМ				WPS No.		HPM-00	7
		w	elding Proce	edure Specific	ation (W	PS)		Rev.:	1	Date:	12/04/2015
			cluing riber			,		Page:	2	of:	2
	IARACTERIST	ICS: (QW-409)									
Current:	AC (-)	DCEP(X)	DCEN(-)	PULSED (-)							
Amps:		180 - 350	O AMP.								
Volts:		24 - 32	VOLT.								
Transfer Meder											
Transfer Mode:		Short Circuiting	g: (-)	Globular (X)		Spray:(-)					
Electrode Wire F	eed Speed Ra	nge:	As Re	q`d.							
Tungsten Electro	ode Size and T	ype:									
		Size:	N/A	Туре:		N/A	-				
Other:					N/A						
TECHNIQUE: (Q	W-410)										
	,			String or Wo	ava Daadi	Stringer/Meerie	Un 40 1/2" Doo	al 14/: alkla			
				-		Stringer/Weave, 0 3/8" Dia. to 3/4" D	-	a wiath.			
		Initial and Int	erpass Cleaning			Wire Brushing, G		hipping.			
				Method of Back	Gouging:	*Grinding and Ca	rbon Air Arc.				
				0	Scillation:	N/A					
			Con	act Tube to Work	Distance:	3/8" to 1"					
				le or Single Pass							
			M	ultiple or Single E							
				lico of thormal n		Not Allowed. Not Allowed. (QV	N-410 64)				
				Use of thermal p	00003303.	Not Allowed. (W	<i>N-410.04)</i>				
	Other:	The Surfaces to	o be Welded Mu	st be Clean and F	Free From L	Dirt, Oil and Rust.					
		Clean a Minimu	ım 2" of on Eac	h Side of the Join	g, Internal	and External Adja	cent Surfaces				
					um of 1/16'	' Thickness to Rei	move all Trace	s of Carburiza	tion Prior	to Welding.	
		* Postweld Hea	t Treatment in (Gas Oven.							
		Filler	Metal		Current						
Weld Layer(s)	Process	Class	Dia.	Type Pola		Amp.	Volts	Travel Spee	ed (IPM)	0	thers
ALL	FCAW	E71T-1C	0.045"	DCEP		180 - 350	24 - 32	VARIAE	BLE		
Additional Instru	ctions:						l			L	
Р	roject Job No	: S16286-IOM								48 of 131	

			НРМ	an a	an a	PQR No.		007	
	F	Procedure Q	ualification R	Record (PQR)	Rev.:	<u> 1 </u> C)ate:	12/04/2015
	<u></u>					Page: _	1	of:	2
Reference WPS No:	HPM-007	Rev.:	1						
Welding process(es):	FLUX CORE	D ARC WELD (F	CAW, w/PWHT)						
Types (Manual, Automat	tic, Semi-autom	atic, Machine):		SEMI-A	JTOMATIC				
JOINTS: (QW-402)									
				Je	Joint Details: Joint Type: Single V	V Groove			
					Bevel Angle: 60° in	Angle			
	602					16" /8"			
	~		不		Hoot Opening.	10			
1/1	16"		1/2						
L	J 								
	1/8"								
	JOINT DESIGN	4							
BASE METALS (QW-403	1)				POSTWELD HEAT TREATM	ENT (QW-407)	· · · ·		
Material Specification:			SA-516		Type:		Stress R	elief	
Type or Grade:			Gr 70		Temperature:		1123	°F	
P N		To	P No		Time Range:		1 Hr. 15 M	inutes	
Thickness of Test coupo Diameter of Test coupor			1/2" 		Other		N/A		
Other:	<u>.</u>	N/A							
FILLER METALS: (QW-4	04)				GAS(ES): (QW-408)				
	04)				GA3(23). (WW-408)	Gas(es)	% (Mixture	:)	Flow Rate
		GN	IAW]	Shielding:	CO 2	99.99%		30 CFH
SFA Specification:			5.20]	Trailing:	NONE	NONE		NONE
AWS Classification: F-Number:			T-1C		Backing:	NONE	NONE		NONE
F-Number: A-Number:		the second se	6 T-1C	-	ELECTRICAL CHARACTERI	STICS (OW 409)	1		
Size of Filler metal:)45"	-	ELECTRICAL CHARACTERI	31103 (044-403)			
Electrode Trade Name:			lloy and others		Current:	DCEP			
Filler Metal Form:		· · · · · · · · · · · · · · · · · · ·	CORED		Polarity:	REVERSE			
Flux Trade Name:			I/A	-	Amps:	210 AMP			
Flux Type:			I/A	-	Volts:	30 VOLT.			
Electrode Flux (Class): Weld Metal Thickness:		and a second	WAX.	-	Mode of Metal Transfer:	Globular			······ ,
Weit metar mickness.					Tungsten elect. Size:		N/A		
Other: No addit	ional Suppleme	ental Filler Metal.	. (QW-404.24/2	7)	Туре:		N/A		
					Other		N/A		
POSITION (QW-405)					TECHNIQUE (QW-410)				
Position of groove: Position of Fillet:		,	1G		Travel Speed:	16 IPM			
Vertical progression:			N/A		String or Weave Bead:	Weave Bead W	idth 3/8".		
_ _		Deverbill (
Uphill (Other:)	Downhill (N/A)		Multipass or single pass:	Multipass.			
					Number of Electrodes:	Single.			
PREHEAT (QW-406)					Use of thermal processes:	Not Used (QW-	.410 64)		
Preheat Temperature (n	nín.)		50 °F	.	too or mermai processes;	USEU (WW	-10.04/		······································
Interpass Temperature			500 °F		Other:		N/A		
				_					
Other:		N/A							
Project .	Job No : S16286-	IOM			I			49 of 1	31

007 **HPM** PQR No. Rev.: 1 Date: 12/04/2015 **Procedure Qualification Record (PQR)** Page: ____2 of: ____ 2 **TENSION TEST (QW-150)** Width Thickness Area Type of Failure & Ultimate Unit Stress Ultimate Total Load Specimen no. Location mm in mm in mm² (sq in) (Pounds Lbs.) Psi Kg Mpa 0.499 0.3743 87,294 BASE METAL 0.750 32,674 T1 -----------------32,679 86,912 BASE METAL 0.752 0.500 0.3760 Т2 --------------------**GUIDED BEND TEST (QW-160)** Remark Figure No. Specimen No. Type of Bend Result WITHOUT SURFACE DISCONTINUITY QW 462.3 (a) SATISFACTORY Face Bend Test D1 SATISFACTORY WITHOUT SURFACE DISCONTINUITY D2 Face Bend Test QW 462.3 (a) WITHOUT SURFACE DISCONTINUITY QW 462.3 (a) SATISFACTORY **Root Bend Test** D3 SATISFACTORY WITHOUT SURFACE DISCONTINUITY Root Bend Test QW 462.3 (a) D4 **THOUGHNESS TEST (QW-170)** Drop Weight Break (Y/N) Mils Lat. Impact Values Notch Location Specimen Size Test Temp. % Shear No. Especimen Ft/lbs Joules Expansion Break No Break FILLET WELD TEST (QW-180) Result Satisfactory: yes (-) No (-) **Penetration into Parent Metal:** yes (-) No (-) Macro: ---- Results ----**OTHER TESTS** Other: Weld Current Filler Metal Weld Travel Speed Side Layer / Type & Amps. (A) Volts. (V) Others (IPM) Process AWS Class Dia. Polarity pass FCAW E71T-1C 0.045" 180 - 350 24 - 32 VARIABLE 1 DCEP Clock No: 1365 Stamp No: 06 Welder's Name: Raymundo Robledo Tec. Yahir Gonzalez Rodriguez Test conduced by: CISA-PD-06/12 AND CISA-PT-06/12 Laboratory Test no.: Test Date: March 15, 2011

We certify that the statements in this record are correct and that the Test welds were prepared, welded and tested in accordance with the requirements of ASME Section IX.

Manufacturer:	HUDSON PRODUCTS DE MEXICO S.A. DE C.V.							
Prep´d By:	LUIS SARIÑANA		Pre					

Prep'd Date: December 04, 2015

Project Job No : S1(28) IOM

			НРМ		WPS No.		HPM-008	
75		Welding Procedu	re Specification (WPS)		Rev Page		Date: of:	12/07/2015 2
Supporting by PQR N	D. (S)	008	By: LUIS SARIÑANA	. ·				
Welding process(es):	GAS TU	INGSTEN ARC WELD (GTA	W) w/PWHT					
Types (Manual, Auton	natic, Semi-automatic	c, Machine):	MANUAL					
JOINT DETAILS (QW-4				 -		<u></u>		
Joint Desing:	Groove and Fillet	(X) Double Weld		Joint Def				
	(X) Single				Root Opening 0 - 3/16"	-	elded From One	Side.
Backing:	(X)Yes	(X) No		-	0 - 3/16"	_ Weld Joint We	elded From Bot	h Side.
Backing Material:	*Weld Metal, P1 M	aterial, Copper, Ceramic.						
	(X)Metal (X) Nonmetallic	(X) Nonfusing-Metal (X) Other						
-		()()))						
Retainers:	(-)Yes	(X)No	-, -	I , .				viewed
								inessed
								n-nG
	(One Side) (Other Side)		- · · · · · · · · · · · · · · · · · · ·					TI-SIG
		· · · · · · · · · · · · · · · · · · ·			·····		15	534
		•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		<u> </u>	HSI	3 G S
BASE METALS: (QW-4	103)			POS	SITIONS: (QW-405)			
P No1	_ Group No 1 & 2	To	P No. <u>1</u> Group N	o. <u>1 & 2</u> Pos	ition of Groove:		All	
Material Specification	Any P1	To <u>An</u>	<u>y P1</u>	Pos	ition of Fillet:		All	
Type or Grade:	Any	ToA	Iny	Wel	ding Progression			
Thickness range:	Groove: <u>3/16</u>	То	1"		Uphill (X)		Downhill (X)	
	Fillet: <u>All</u>	To	All	Oth	er:	N	/A	· · · · · · · · · · · · · · · · · · ·
Pipe Diameter Range:	Groove:	2 7/8" O.D. or Greater		PRE	HEAT: (QW-406)			<u></u>
	Fillet: All	То	A//	Pret	heat Temp.	Min.	50°F	
Chemical Analysis:	1		····		rpass Temp.	– Max.	420°F	
Mechanical Property:					heat Maintenance.		NONE	
		0 5# 71 to 1 (014) 400 0				-		
Other: <u>All Weld Pa</u>	asses to be Less tha	n 0.5" Thick (QW-403.9)	· · · · · · · · · · · · · · · · · · ·	Oth	er:	• N	/A	
FILLER METALS: (QW	-404)		POSTW	ELD HEAT TREA	TMENT: (QW-407)			
		GTAW	Type:			Stress	Relief	
SFA Specification:		SFA 5.18	Temper	•			Minimum	
AWS Classification: F-Number:		ER70S-6 6	Time Ra Other:	inge.	<u> </u>	r / Inch , 1 Hou N/A	r / 15 min Minim	um
A-Number: Size of Filler metal:		1 1/16", 3/32", 1/8		N-408)				
Electrode Trade Name	:	Washington Alloy or			()			PI . P .
Filler Metal Form: Flux Trade Name:		WIRE N/A		Gas	(es)	Mixture		Flow Rate
		N/A N/A	Shieldir	ig:	Ar	99.99%		10 - 20 CFH
••		11/A	Trailing	:	NE	NONE		NONE
Electrode Flux (Class)		a: 1" MAX.				and the second sec		
Electrode Flux (Class)					NE	NONE		NOVE
Electrode Flux (Class) Weld Metal Thickness Other: Each Base	: Groove Filler Metal-Filler Metal Co		Backing		DNE	NONE		NONE
Electrode Flux (Class) Weld Metal Thickness Other: <u>Each Base</u> Recorded I	: Groove Filler Metal-Filler Metal Co Individually.	t: All				NONE s is Optional (Q	W-408.5)	NONE
Recorded No addition Weld meta	: Groove Filler Metal-Filler Metal Co Individually. Inal Supplemental Fil I Chemical Composi	t: All	Backing				W-408.5)	NONE

热	HPM							WPS No			HPM-008		
		We	elding Proce	dure Speci	fication (W	PS)		Rev.:		Date:	12/07/2015		
						-		Page: _	2	of:	2		
ELECTRICAL CH	ARACTERIST	ICS: (QW-409)											
Current:	AC (-)	DCEP(-)	DCEN(X)	PULSED (-)									
Amps:		80 - 2	50										
Volts:		10 -	19										
Transfer Mode:		Short Circuiting	:(-)	Globular (-)		Spray: (-)							
Electrode Wire F	eed Speed Ra	nge:	As Re	oq'd									
Tungsten Electro	de Size and T	ype: Size:	3/32", 1/8"	Туре:	EWTh-2, 2	% THORIATED							
Other:					N/A	· · · · · · · · · · · · · · · · · · ·							
-													
ŢECHŅIQUE: (Q)	N-410)												
				-		Stringer/Weave,	Up to 1/2" Bea	d Width.					
		Initial and Inte	ernass Cleaning		Sas Cup Size: rinding. etc.):	Wire Brushing, G	rinding and Cl	nippina.		·····			
		million and million				*Grinding and Ca							
	•				Oscillation:	N/A							
				tact Tube to W		A							
				le or Single Pa									
			M	ultiple or Singl		Single Not Allowed.							
				lise of therm:		Not Allowed. (QI	N-410.64)						
	Other	The Surfaces to	be Welded Mu	st be Clean an	d Free from d	irt, Oil and rust fo	r a Distance at	least 1/2" fro	m the join	t weld.			
		Clean a Minimu	m 2" of on Eac	h Side of the J	oing, Internal	and External Adja	cent Surfaces						
					imum of 1/16	" Thickness to Re	move all Trace	s of Carburiz	ation Prior	to Welding.			
		* Postweld Hea	t Treatment in (Gas Oven.									
Weld Layer(s)	Process	Filler			Current	[Volts	Travel Spe	ed (IPM)	. 0	thers		
		Class	Dia.		Polarity	Amp.							
ALL	GTAW	ER70S-6	1/16"	DC		80-175	13 - 23	VARIA					
ALL	GTAW	ER70S-6 ER70S-6	3/32" 1/8"	DC DC	EN	90 - 220 90 - 250	13 - 24 13 - 26	VARIA VARIA					
ALL	GTAW	ER/05-0	1/0			30 - 230		Vana	DLL				
					Ļ		· · · · · · · · · · · · · · · · · · ·						
	ļ			l	· · · · · · · · · · · · · · · · · · ·		<u> </u>	 		ļ			
							- 						
				<u> </u>	······································								

							-		1	 			
Additional Instru	ictions:		·	J		• · ·		•			· · · · · · · · · · · · · · · · · · ·		
						···							
						· · · · · · · · · · · · · · · · · · ·							
Pro	ject Job No : S	516286-IOM								52 of 131			
	•									-			

.

. •

			НРМ		- · · ·		PQR No.		008	}
72		•					Rev.:	1	Date:	12/07/2015
	P	rocedure Qua	lification Rec	ord (F	PQR)		Page:	1	of:	2
Reference WPS No:	HPM-008		1	3						
Welding process(es):	GAS TUNGS	STEN ARC WELD	(GTAW) w/PWHT	-						
Types (Manual, Automatic	c, Semi-autom	atic, Machine):	. –		MANUA	AL				
JOINTS: (QW-402)							····			
				.1	oint Details:					
				Ű	Joint Type:	Single V	Groove			
	602				Bevel Angle:	60° in	Angle			
					Land:	1/1				
	-		一 不	•	Root Opening:	1/8	3"			
1/16*	\sim		1/2".		•					
	I									
	1/8*				17 · · · · · · · · · · · · · · · · · · ·	986 (s				
L	OINT DESIGN	J .		_						
	•									
BASE METALS (QW-403)					POSTWELD HEAT	T TREATM	ENT (QW-407)		
								,		
Material Specification:			SA-516		Туре:	· · ·			ss Relief	
Type or Grade:			Gr 70		Temperature:	-			- Minimum	
P No		То	P No:	1	Time Range:	_	1 Hr / Ir		ess, 1 Hour	r minimum
Thickness of Test coupon Diameter of Test coupon:		_	1/2" N/A		Other			N/A		
Other:		N/A	N/A							
FILLER METALS: (QW-404	4)				GAS(ES): (QW-40)8)				
							Gas(es)	% (Mix	ture)	Flow Rate
					Shielding:	_				
		GTA			-	-	Ar	99.9		18 CFH
SFA Specification: AWS Classification:		SFA 5 ER70			Trailing:	·	NONE	NOI		NONE
F-Number:		6	3-0		Backing:		NONE	NOI	VE	NONE
A-Number:		1			ELECTRICAL CHA	ARACTERI	STICS (OW-4	09)		-
Size of Filler metal:		3/32	π				01100 (@114			
Electrode Trade Name:		Washington Alle	oy and others		Current:		DCEN			
Filler Metal Form:		WIR	E		Polarity:		TRAIGTH			···
Flux Trade Name:		N/A			Amps:	2	20 AMP			
Flux Type:		N/A			Volts:	1	4 VOLT.			
Electrode Flux (Class):		N/A			Mode of Metal Tra	ansfer: <u>^</u>	I/A			
Weld Metal Thickness:		1" MA	IX.							
					Tungsten elect. Si	ize:			1/8"	
Other: <u>No additio</u>	nal Suppleme	ntal Filler Metal.	QW-404.24/27)		Type:	_			% THORIAT	ED
					Other			N/A		
POSITION (QW-405)					TECHNIQUE (QW-	-410)				
						,				
Position of groove:			1G		Travel Speed:	8	IPM			
Position of Fillet: Vertical progression:			N/A							
verncai progression.					String or Weave E	Bead: S	tring and Wea	ive bead 3/	8"	
Uphill (-)	Downhill ()			Multipass or singl	le pass: A	ultipass.			
Other:		N/A				<u></u>				
	·				Number of Electro	odes: s	ingle.			
PREHEAT (QW-406)						-				
Preheat Temperature (mii	n.)		50 °F		Other:			N/A		
Interpass Temperature (N		-	420 °F							
		-								
Other:		N/A								
	No : S16286-IC				1				53 of 1	31
Fiblect JOD	<u>9. 510260-IC</u>	/1/1			l	- 1			55 01 1	

	÷.				HPM			e n ange r 25 - 1950	PQR No.	R iegnick Afrika	008
52		*****	******		******			······································	Rev.:		Date: 12/07/2015
			Proc	edure Q:	ualificatio	on Record (PQR)				-
								Page:	2	. of:	2
					TEN	ISION TEST (QW-150)				
	N	Vidth	Thici	kness	-	Area	Ultimate Tot	al Load	Ultimate l	Jnit Stress	Type of Failure &
Specimen no.	mm	in	mm	in	mm²	(sq in)	Кд	(Pounds Lbs.)	Psi	Мра	Location
T1		0.750		0.500		0.3750		30,364	80,971		BASE METAL
T2		0.751		0.500		0.3755		30,682	81,710	7200	BASE METAL
		<u> </u>	<u> </u>								
			[GUIDE	D BEND TES	r (QW-160)	1			
Specimen No. D-1		of Bend end Test		e No.		Result	CODV.	14/17		Remark	
D-1		end Test	QW 46 QW 46			SATISFACT				ACE DISCO	
D-3		end Test	QW 46			SATISFACT				ACE DISCO	
D-4	Root B	end Test	QW 46	2.3 (a)		SATISFACT	ORY	WIT	HOUT SURF	ACE DISCO	NTINUITY
					THOU	GHNESS TES	T (QW-170)				
No. Especimen	Notch	Location	Specim	en Size	Test Temp.		act Values	% Shear	Mils Lat.		eight Break (Y/N)
	+					Ft / Ibs	Joules		Expansion	Break	No Break

Other:			· · · · · · · · · · · · · · · · · · ·		<u>.</u>				·····	·	
r	Weld		Filler	Metal	Current						
Side	Layer /	Weld Process	AWS Class.	Dia.	Type &	Amps. (A)	Volts. (V)	Travel Speed (IPM)		Others	
	pass ALL	GTAW	ER70S-6	.0937"	Polarity DCEN	220	14	VARIABLE			
Welder's Name:		Jose Gua	dalupe Pala	acios			Clock No:	S/I	N	Stamp No:	0
Test conduced k	iy:		r Gonzalez			······			<u>-</u>		
Laboratory Test	•		07/12, CISA								
Test Date:		March 15	, 2011				-				
We certify that th of ASME Section		nts in this i	record are co	orrect and t	that the Test	welds were pr	epared, welded and	d tested in acc	ordance with	n the requirer	nents
Manufacturer:	HUDSON	PRODUC	TS DE MEX	ICO S.A. D	E C.V.						
			<u>A</u>			•	· · · · ·				
Prep´d By:	LUIS SAI	RIÑANA	Time			Prep'd Date:	— December 0	7, 2015			

合合	НРМ							WPS No.	HPN	1-010	
	We	ldina Pro	ocedure S	pecificati	on (WPS	5)		Rev:	0	Date:	04/14/2014
		g			•	,		Page	1	of:	2
Supporting by PQR No. (s)	010		By:	LUIS SARII	ÑANA						
Welding process(es):	GAS METAL	ARC WEL	DING (GMA	W) + FLUX C	CORED AR	C WELD	(FCAW) +	SUBMERGED AR	C WELD (SA	W) w/PWHT	
Types (Manual, Automatic, S	emi-automatic, Mac	:hine):		(GMAW, FC	CAW) SEMI	AUTOM	ATIC, (SAI	N) MACHINE.			
JOINT DETAILS:	<u></u>				ŀ	JOINT:					
						Туре:		Groove and Fill			
								SINGLE (X)) Double W	/eld(X)	
					1	Backing:		Yes (X)		No (-)	
FOR JOINT DESIGN			Backing N	Aaterial:	Weld Metal, P1	Matl, Coppe	r, Ceramic.				
FABRIC					Metal (X)) Nonfusing	g-Metal (-)				
								Nometalic (-)	Other (-)	
Sketches, Production Drawings, Weld arrangement of the parts to be welded						0.1	D			Le Revi	ewed
groove may be specified.						Other:		al (One Side) tal (Other Side)			essed
											A Ann
											22
										1494	
Base Metals: (QW-403)							POSITIO	NS: (QW-405)		HSB	GS
	up No. 1&2	То	P No.	1	Group No	1 & 2	Position	of Groove:	AII GMAW/	FCAW	
Material Specification:	Any P1	- 10 To	Any P1				Position		All GMAW/		
Type or Grade:	Any	- To	Any	-				Progression			
	roove: 3/16"	- To	8"	-				Uphill (X)		Downhill (-))
-	Fillet: All	- 'С То	 All	-			Other:	For SAW Pos. 1	the groove 1		
	roove: 2 7/8" O.D.	-		-			PREHEA				
· · · · · · · · · · · · · · · · · · ·		To	<u></u> All	-			Preheat		Min.	50°F	
	Fillet: <u>All</u> N.A	- '0		-			Interpass		Max.		
Chemical Analysis:					-			Maintenance.	11023.	NONE	
			(0)4(400 0)		- .			namenance.			
	ss to be Less than	U.Ə'I NICK	(4117-403.9)		T		Other:				
FILLER METALS:					POSTWE	LD HEAT	TREATM	ENT:			
		GMAW	FCAW	SAW	-	ture Rang	e.			1100 °F MIN	
SFA Specification: AWS Classification:		SFA 5.18 ER70S-6	SFA 5.20 E71T-1	SFA 5.17 EM13K	Time Ran Other:	ige.		N.A.	1	HR. 15 MINU	ES, MIN.
F-Number:		6	6	6		1 400)					
A-Number: Size of Filler metal:		1 0.035"	1 0.045"	1 3/32"	GAS: (QV	v-4U8)					
Flux Type:		0.045" N.A.	1/16" N.A.	1/8" ACTIVE	1		Gas(es)		Mixture		Flow Rate
Flux Trade Name: Electrode Flux (Class):		N.A. N.A.	N.A. N.A.	N.A. F7A0-EM13K	Shielding	; :	Ar + CO	2	75% + 25%		20 - 50 CFH
Filler Metal Form: Weld Metal Thickness Range	e: Filete/ Fillet:	SOLID WIRE ONLY 0.140"	FLUX CORED 1/2"	solid wire only 2 1/4"	Trailing:		N.A.		N.A.		N.A.
THE MELAN THE KIESS KANY	, increating	All	All	All	1						
Other: Each Base Metal	-Filler Metal Combi	, nation Sho	uld be		Backing:		N.A.		N.A.		N.A.
Recorded Individ				-	Other: -			N.A.			
	pplemental Filler M	etal (QW-4	04.24/27)	-							
<u>(QW-404.24/27)</u>	· · · · · · · · · · · · · · · · · · ·			-							
					1						

e

þ

合合	the second secon								HPM-	010	····
52	**************************************						5	WPS No Rev.:	0	Date:	04/14/2014
		Weld	ding Proced	ure Specifi	cation (W	'PS)					•
								Page:	1	of:	2
ELECTRICAL C	HARACTERISTI	CS: (QW-409)	·····								
Current:	AC (-)	DCEP(X)	DCEN(-)	PULSED(-)							
Amps:	90 - 170 (GMA	W)· 170 - 350 (FCAW): 170 - 4	25 (SAW)							
Volts: <u>17 - 23 (GMAW); 24 - 30 (FCAW); 24 - 29 (SAW)</u>											
Transfer Mode:		Short Circuiti	ng:	Globular:		Spray:					
Electrode Wire	Feed Speed Rai	nge:		As Req´d			-				
Tungsten Elect	rode Size and T	ype: Size:	N.A.	Туре:	N.A.						
Other	*CMAN4//5L					-					
Other:	*GMAW (Short	concuning); F	CAN (Giopula								
TECHNIQUE:											
				String or W	/eave Bead:	Stringer/Weave	, Up to 1/2"	Bead Width.			
						3/8" Dia. To 3/4					
	In	itial and Interp	bass Cleaning	(Brushing, Gri	inding, etc):	Wire Brushing,	Grinding ar	d Chipping.			
				Method of Bac	k Gouging:	Grinding and C	arbon Air A	rc.			
					Oscillation:						
Contact Tube to Work Distance: 3/8" to 1"											
Multiple or Single Pass (per side): Multiple.											
			Mult	iple or Single	Electrodes	Single					
					Peening	Not Allowed					
	Other:	The Surfaces	to be Welded	Must be Cleai	n and Free l	From Dirt, Oil and	d Rust.				
		, iii									
Weld Layer(s)	l – – – – – – – – – – – – – – – – – – –	Filler	Metal		Current			Travel S			Others
	Process		Dia	Turne D	a la vite c	Amp (rango)	Volts	Rang	le		rks, Comments, Hot Technique, Torch
		Class	Dia.	Туре Р	olanty	Amp.(range)	Voita			Angle, Etc.)	in the second
1	GMAW	ER70S-6	0.035"	DCI	EP	90 - 170	16 - 23	VARIA	BLE		
2	FCAW	E71T-1	0.045"	DCI	EP	170 - 350	24 - 30	VARIAI	BLE		
3	SAW	EM13K	1/8*	DCI	EP	250-550	26 - 37	VARIAI		ļ	
4	SAW	EM13K	1/8"	DCI		250-550	26 - 37	VARIA		 	
5	SAW	EM13K	1/8"	DCI		250-550	26 - 37	VARIA		 	
6	SAW	EM13K	1/8"	DCI		250-550	26 - 37	VARIA			
7	SAW	EM13K	1/8" 1/8"	DCI DCI		250-550 250-550	26 - 37 26 - 37	VARIAI VARIAI		 	
8	SAW SAW	EM13K EM13K	1/8"	DCI		250-550	26 - 37	VARIA		1	
9 10	SAW	EM13K	1/8"	DC		250-550	26 - 37	VARIA		1	
11	SAW	EM13K EM13K	1/8"	DC		250-550	26 - 37	VARIA			
12	SAW	EM13K	1/8"	DC		250-550	26 - 37		BLE.		
Additional Instr	uctions:										
	- 										

.

0

合合			НРМ			PQR No.	010)	
X	Proc	edure C	lualificatio	n Record (PQR)	Rev.: Page:	01	Date: of: _	04/14/2014
Reference WPS No:	HPM-010	Rev.:	0	-					
Welding process(es):	GAS METAL AF w/PWHT	C WELDI	NG (GMAW)	+ FLUX CORE	D ARC WELD (FCAW) +	SUBMERGED	ARC WE	LDING (S	SAW)
Types (Manual, Automatic	, Semi-automatic	, Machine):	(GMAW, FCA	W) SEMI-AUTOMATIC, (SA	W) MACHINE.			
JOINTS: 	- 60°+/-5°	0"		 11/2" ↓	FILL 1 1/8" HOT PASS 1/4		1/8	GMAW ROOT	
(F¢	or combination qua	lifications, I	G the deposited v	Froove Design of weld metal thick	f Test Coupon mess shall be recorded for each	filler metal or pr	ocess used	.)	
BASE METALS					POSTWELD HEAT TREATM	1ENT(QW-407)	44		
Material Specification:			SA - 516		Temperature:			3 °F	
Type or Grade:		A / .	GR.70		Time: Other:			MINUTES .A.	<u> </u>
P No.		A/to	PNo:	1 1/2"	Ouler:				
Thickness of Test coupon Diameter of Test coupon:				.A.					
Other:		N.A.							
FILLER METALS:		<u> </u>			GAS(ES) (QW-408)	Gas(es)	% Mixt	ure	Flow Rate
FILLER WETALS:									25 CFH
		GMAW	FCAW	SAW	Shielding:	Ar + C0 2	75% +		N.A.
SFA Specification:		SFA 5.18 ER70S-6	SFA 5.20	SFA 5.17 EM13K	Trailing: Backing:	<u>N.A.</u> N.A.	<u>N.A</u> N.A		N.A.
AWS Classification: F-Number:		6	6	6	Dacking.				
A-Number:		1	1	1	ELECTRICAL CHARACTER	ISTICS (QW-40	9)		
Size of Filler metal:		0.035"	0.045"	1/8"]				
Flux Type:		N.A.	N.A.	ACTIVE	Current:			CEP	
Flux Trade Name:		N.A.	N.A.	N.A.	Polarity:			ERSE	
Electrode Flux (Class):		N.A. SOLID WIRE	N.A.	F7A0-EM13K	·	(115); FCAW (2			
Filler Metal Form:		ONLY	FLUX CORED	SOLID WIRE ONLY		(18.5); FCAW ((Clabular)
Weld Metal Thickness:		1/8"	1/4"	1 1/8"	Mode of Metal Transfer:	GMAW (Shor	I Circulun	g); FCAV	(Globular)
					Tungsten elect. Size:			N.A.	
Other: No additio	nal Supplementa	l Filler Me	tal (QW-404.)	24/27)		N.A.			
(QW-404.2	4/27)								
POSITION					TECHNIQUE (QW-410)	armai all'			
Position of groove: Position of Fillet:		3G (GMA	W/FCAW) An N.A.	d 1G (SAW)	Travel Speed:	GMAW(21.6 IF	PM); FCAW	(16 IPM);	SAW(26 IPM)
Vertical progression:			String or weave bead:	GMAW And F		VE); SAN	I(STRING)		
		Multinggo or single ness-	Weave Bead Width		ELEI- CAM	V (MULTIPASS)			
Uphill (X Other:	N.A	Downhill	()		Multipass or single pass:	· · · ·	CAVY (SING	LEJ; SAV	(MULTIFASS)
PREHEAT (QW-406)				• • •	Number of Electrodes:	Single			
Preheat Temperature (mi				0 °F	Other:	<u>N.A.</u>			
Interpass Temperature (N	láx.):		42	0°F	1				
Other:		N.A.		. <u></u> .					

,

¢

					НРМ				PQR No.	010	
			-						Rev.:	0	Date: 04/14/2014
			Pro	ocedure C	Qualification F	(ecora (PQR)		Page:	2	of:	2
					TENSIO	N TEST (QW-150)					
Specimen no.	Dia	neter	Thio	kness		rea	Ultimate	Total Load	Ultimate Uni	Stress	Type of Failure
	mm	in	mm	in	mm'	(sq in)	Kg	(Pounds Lbs.)	Psi	Мра	& Location
T1		0.503				0.1987		15,150	76,246		BASE METAL
T2		0.504				0.1950		15,330	78,615		BASE METAL
T3		0.503				0.1987		15,060	75,793		BASE METAL
T4		0.504				0.1950		15,160	77,744		BASE METAL
<u>T5</u>		0.502				0.1979		14,480	73,168 72,672		BASE METAL BASE METAL
<u></u>		0.503				0.199		14,440	/2,0/2		DAGEMEIAL
					GUIDED B	END TEST (QW-16	0)				
Specimen No.	Туре	of Bend	Figu	ire No.		Result			Re	mark	
D1	Side Be	end Test	QW 4	62.3 (a)		ATISFACTORY					
D2	Side Be	end Test		62.3 (a)		ATISFACTORY					
D3		end Test		62.3 (a)		ATISFACTORY		<u> </u>			
D4	Side Be	end Test	QW 4	62.3 (a)		ATISFACTORY IESS TEST (QW-17	.0)	1			I
-			0	Cine .			act Values				·····
Specimen no.	Notch	Location	Speci	nen Size	Test Temp.		act values		Drop	Weight B	reak (Y/N)
						Ft.lbs	% Shear	Mils			
	-										
	ļ										
Comments:	1		N.A.			· · · · · · · · · · · · · · · · · · ·			·····		
							0)				
Result:					FILLEIW	ELD TEST (QW-18		factory:	yes (-)	No (-)	
Penetration in	to Parent	Metal:					••••		yes (-)	No (-)	
Macro: Re				N.A.							
					0	THER TESTS					
					0	HER IESIS					
Type of Test:	_			<u> </u>							
Deposit analy	sis:			N.A.							
Other:		-									
Welder's Nam	e:	JESUS BE	RNAL (GM	AW, FCAW,	SAW)		Clock No	:	1342	Stamp N	8
Test conduce	d by:				TEC YAHIR GO	NZALEZ RODRIGL	IFZ				
Laboratory Te	•					1/12 And CITECSA					
Test Date:					June 06, 2012			_			
We certify tha and that the T in accordance ASME Code.	est welds	were prep	ared, wel	ded and te	sted				* ¹ .		
Manufacturer:	HUDSON	I PRODUC	TS	-	By:	LUIS SARIÑANA	-		Code Year:	2010	-
Date:	July 01,	2011		-							
Remark:	2011a A	ddenda, D	ate July 1	, 2011							

.

			is in the state	and the second states of	and the second second	Sector Sector					
		DEPAF	TAMENTO	DE CONTR	OL DE CAL	IDAD					
				NTROL DEPAI							
Conso		LAROR		PRUEBAS I							
INDUST	RIAL										
TECNOLO	OGÍAS	DESTRUCTIVE TEST LABORATORY									
			PRUEE	BA DE TENS	ION						
				SION TEST							
FECHA:	JL	INE 6th, 2012		No. DE REPO	the second s	CISA-	PT-11/12				
DATE:	•			REPORT No .:			1-11/12				
CLIENTE:	HUDSON PRODUCTS DE MEXICO, S.A. DE C.V.										
CUSTOMER:							*				
IDENTIFICACION: CAL	IFICACION DE F	PROCEDIMIENTO	DE SOLDADUR	A: PROCESOS DE	SOLDADURA "	GMAW+FCAW+S	SAW" [HPM-010]				
		METAL E	BASE: SA-516-70	& METALES DE A	PORTE:GMAW	[FR705-61: FCA	W [F71T-1]				
ESPECIFICACION DE				AND SAW [E	the second second second second						
MATERIAL SPECIFICATION				AND GATTLE	rao Emisity						
MAQUINA UTILIZADA MACHINE USED FOR TESTING:	PARA LA P	RUEBA:		UNIVERSAL I	MACHINE: TI	NIUS OLSEN					
No. DE SERIE:	1571	95			DE		0011				
SERIAL NUMBER:	15/13	55	CALIBRATION DATE		DE	CEMBER 3th,	2011				
INFORMACION GENERAL:			CALIBRATION DATE		and the second						
GENERAL INFORMATION:											
No. de ESPECIMEN:		T1 -	Ta	To							
SPECIMEN No.:		11.5	T2	Т3	T4	T5	Т6				
LOCALIZACION:				SEE QV	V-151.3						
LOCATION:		AS	ME, SECTION I	(, 2010 EDITION, 2		[Turned Specim	nens]				
DIAMETRO DEL SPECIMEN (p	oulgadas):	0.503"	0.504"	0.503"	0.504"	0.502"	0.503"				
SPECIMEN DIAMETER (inches):											
AREA DEL ESPECIMEN (pulga	adas²):	0.1987	0.1950	0.1987	0.1950	0.1979	0.1987				
SPECIMEN AREA (inches2)			A State State		C. Arrestore and the						
ULTIMA CARGA TOTAL (Lb).: ULTIMATE TOTAL LOAD (Lb).:		15,150	15,330	15,060	15,160	14,480	14,440				
ESFUERZO A LA TENSION (per TENSILE STRENGTH (Psi)	si):	76,246	78,615	75,793	77,744	73,168	72,672				
TIPO DE FALLA Y LOCALIZAC	CION	DUCTIL	DUCTIL	DUCTIL	DUCTU	DUOTU					
TYPE OF FAILURE & LOCATION:		WELD METAL	WELD METAL	WELD METAL		DUCTIL WELD METAL					
CARGA LIMITE ELASTICO (Lb	1)				INDUSTRIAL S	A. DE C.V.	WELD METAL				
YIELD LIMIT LOAD (Lb).:	''				L DALIDAD LOUALITY	CONTROL	2				
ESFUERZO DE CEDENCIA (ps YIELD STRENGTH (psi):	ii):			REVISADO Y API	OBADO / REVIEWED A						
ELONGACION EN 2 in (%):		A Provide Laboration	C	NSORCIO DUSTRIAL	- Abuser	\rightarrow					
ELONGATION IN 2 in (%):			#		FIRMA NAME AND S	GNATURE					
RESULTADO:		ACCEPTABLE	ACCEPTABLE	ACCEPTABLE		ACCEPTABLE	ACCEPTABLE				
RESULT:		· .		ACCEL HABEE	AGGELLADEE	ACCEPTABLE	ACCEPTABLE				
OBSERVACIONES :/RE		REFERENCE: A	SME SECTIONS	II, PART A AND C	, 2010 EDITION,	2011a. ADDENL	DA.				
ASME II PART A: SA-516-70		ENGHT: 70,000 T	0 90,000 Psi.								
ASME II PART C: GMAW S	FA 5.18 (ER70S	-6) TENSILE STR	ENGHT: 70,000	PSI MINIMUM; FCA	AW SFA 5.20 (1	71T-1) TENSILE	STRANGHT:				
70,000 TO 95,000 PSI AND S	SAW SFA 5.17	(F7AO+EM13K) T	ENSILE STRENG	GHT: 70,000 TO 95,	000 PSI.						
SPECIMEN WIT POSTWELD				TEST COUPON TH	IICKNESS = 1 1/	2".					
THE TEST WAS PERFORME	ED ACCORDING	TO SA-370 OF A	SME CODE, SEC	TION II, PART A, 2	010 EDITION, 2	011a ADDENDA:	"STANDARD				
TEST METHODS & DEFINITI	IONS FOR MECI	HANICAL TESTIN	G".								
ELABORADO F	POR		APROR	ADO POR:	RECIPIDO	DE CONFORMUS					
ELABORATED B				DVED BY:							
			AFPRO	web Br.	RECEIV	ED CUSTOMER CON	FORMITY				
1000	622		No	0	(1					
YAHIR GONZALEZ RO	DRIGUEZ		JAIME CO	RTES PEREZ	(Jundo	~				
June 6th, 201			June 6	th, 2012		7 18.					
NOMBRE, FECHA Y				CHA Y FIRMA		BRE, FECHA Y F					
NAME, DATE AND SIGN JEFE DE PRUEBAS DES				ND SIGNATURE	NAM	E, DATE AND SIGNA	TURE				
DESTRUCTIVE TEST				TROL DE CALIDAD							

Consorcio INDUSTRIAL TECNOLOGÍAS	DEPARTAMENTO DE CONTROL DE CALIDAD QUALITY CONTROL DEPARTMENT LABORATORIO DE PRUEBAS DESTRUCTIVAS DESTRUCTIVE TEST LABORATORY PRUEBA DE DOBLEZ									
FECHA:	JUNE 6	th. 2012	BEND TES	No. DE REPORTE:	CISA-PD-0	11/12				
		CALCULATION AND AND AND AND AND AND AND AND AND AN		REPORT No.						
CUSTOMER:	HUDSUI	PRODUCI	S DE MEXIC	CO, S.A. DE	<i>C.V.</i>					
IDENTIFICACION:	CALIFICACION DE PROCED	DIMIENTO DE SOLD.	ADURA: PROCESOS	S DE SOLDADURA "	GMAW+FCAW+SAW	/" [HPM-010]				
		AL BASE: SA-516-7	0 & METALES DE A	PORTE:GMAW [ER7	0S-6]; FCAW [E71T-	1]				
ESPECIFICACION DE MATERIAL SPECIFICATION			AND SAW [E7	A0+EM13K]						
MAQUINA UTILIZADA MACHINE USED FOR TESTING:	PARA LA PRUEBA:	MAQUINA DE	ENSAYOS FISICO	S, METODO UNIVI	ERSAL, MK TINIUS	OLSEN				
No. DE SERIE: SERIAL NUMBER:	157195	;	FECHA DE CAL	IBRACION:	DECEMBER	8th, 2011				
INFORMACION GENERAL Y C GENERAL INFORMATION AND SKE No. de ESPECIMEN: SPECIMEN No.: TIPO Y FIGURA No.: TYPE AND FIGURE No.: RESULTADO: RESULT:		T, in. (mm) 1 1/2" (38.1) D1 SIDE BEND FIGURE: 462.2 ACCEPTABLE	w, in. (mm) 3/8 (9.52) D2 SIDE BEND FIGURE: 462.2 ACCEPTABLE	CONSORCIO LINDUSTRIAD	DACIO INDUSTRIAL. IROL DE CALIDAD / OUALI O Y APROBADO / REVIEWED J. CORTES MUN MBRE Y FIRMA / MAME AND D4 SIDE BEND FIGURE: 462.2 ACCEPTABLE	AND APPROVED				
OBSERVACIONES :/RE	MARKS	WPS: HPM-01	0							
REFERENCE: ASME COL	DE, SECTION IX, 2010 EDI		-		Contraction of the second					
WELDING PROCESS: GM				MAW & FCAW:	GAND SAM A	3				
THE TESTS WAS PERFO		A-370 OF ASME	CODE, SECTION II.	PART A. 2007 FD	ITION. 2009 ADDE	NDA.				
"STANDARD TEST METH	ODS & DEFINITIONS FOR	R MECHANICAL T	ESTING"			IDA.				
TEST COUPON THICKNE				TWELD HEAT TRI	EATMENT.					
ELABORA		APROBA			CONFORMIDAD CL	IENTE				
ELABORA	TED BY	APPRO	VED BY		CUSTOMER CONFORMITY					
YAHIR GONZALE JUNE 6th NOMBRE, FEC	1, 2012	JAIME COR JUNE 60	h, 2012							
NAME, DATE AN		NOMBRE, FEO NAME, DATE AN			RE, FECHA Y FIRMA DATE AND SIGNATURE					

CONSORCIO INDUSTRIAL, S.A. DE G.W. CONTROL DE CALIDAD / QUALITY CONTROL REVISADO Y APROBADO I REVIEWED AND APPROVED

PRINTED IN U.S.A

2 OHrs. 15 Mins.

7AM

8AM

:1600

1400

1200

1000

10 2000°

-1800-

9AM

000

800

00

09

DATE:

Wds

Wdt

200

200

400

600

Mac

10AM

IIAM

NOON

Mdl

FK 800

2000 0

MdZ

6AM

5AM

200

-800

000

000

Mdb

002 01 0

200

000

AAM

0 L CORTES

OONCMBRE Y FIRMA / MAME AND SIGNATURE

- NW

S

STOOL STOOL

200

WEL

ONEVI

24001660-005

WELDING PROCEDURE QUALIFICATION: HPM-010 CUSTOMER: HUDSON PRODUCTS DE MEXICO, S.A. DE C.V. WELDING PROCESS: GMAW+FCAW+SAW BASE METAL: SA - 516 - 70

THICKNESS METAL: 11/2"

FILLER METALS: GMAW (ER70S-6); FCAW (E7AT-1) AND SAW (F7A0+EM13K).

REFERENCE CODE: ASME SECTIONS II PART A & C AND IX 2010 EDITION, 2011a. ADDENDA. **PWHT CHART:**

Wd9

CISA-PWHT-6/2012 JUNE 6th, 2012

MUL

-009

Wd8

JOB SPECIFIC VENDOR DATA

SIEMENS

NEMA Motor Data

Motors Manufactured Before JAN 18 Only Suitable for

MLFB-Ordering data :

1MB2121-2BD11-4AG3

Offer no. :

Remarks :

Nameplate Data

Туре	XP100	Div.1, C	Cl , Groups C&D, Cll, Groups F&G				
HP	5.0		Rating	Cont.			
Voltage	(14) 230/460V (Suitable for 20		Ins. Class	Insulation class F			
Amps	17.6 / 8.8 A		S.F.	1.15			
FL RPM	875		Amb. Temp.	55 deg C			
FL Efficiency	86.5 %		Temp Code	T3C			
FRAME	254T		Temp. Rise	Class B			
DE AFBMA	45BC03JP30		NEMA Design	B kVA Code G			
ODE AFBMA	45BC03JP30		Mtr WT(lbs)	270			
60 Hertz	3 Ph	TEFC	IP	65			

Typical Performance Data									
Load	No Load	1/2	3/4		Full Load	LRC			
Efficiency		85.5 %	87.0 %		86.5 %				
Power Factor		43.0	54.0		61.0				
Current (A)	5.5 A	6.4 A	7.5 A		17.6 / 8.8 A	33.0 A			
Inverter Duty	VT	20:1		СТ		4:1			

Item no. : Consignment no. : Project :

Type of construction	
Motor protection	(G) Thermostats, Klixon type, normally
Terminal box design	(3) Mounting - F-1

Mounting and motor protection

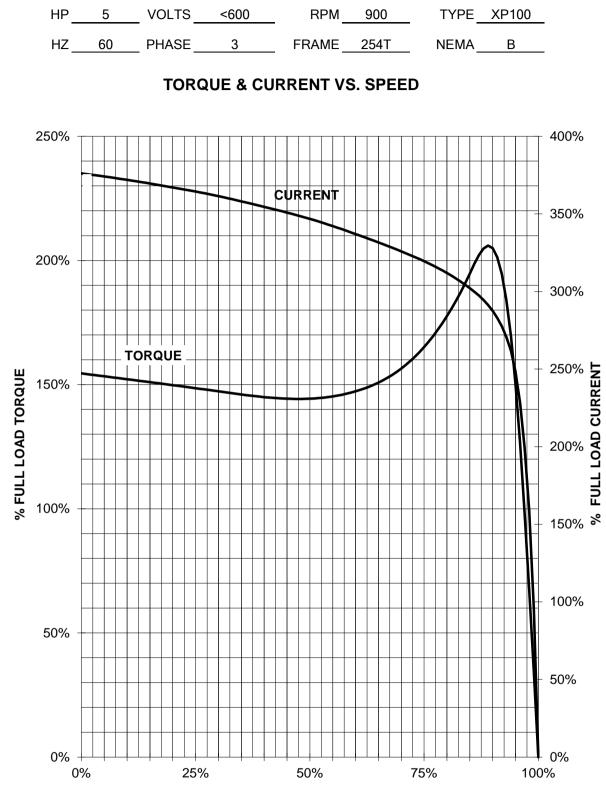
Bearing Data				
	DE	ODE		
Bearing Size	6309 Z C3 S0	6309 Z C3 S0		
Bearing Type	Ball Bearing	Ball Bearing		
AFBMA	45BC03JP30	45BC03JP30		

Mechanical Data								
SAFE STALL TIME	HOT (s)	65	COLD (s)	115				
Rtr wt (lbs) 55.4	4 Rtr WK2	1.3800						
FLT (ft-lbs) 41.0	0 LRT (%)	156	BDT (%)	210				
Ext Load Inertia (WK2) Capability	142						

Typical Noise Data

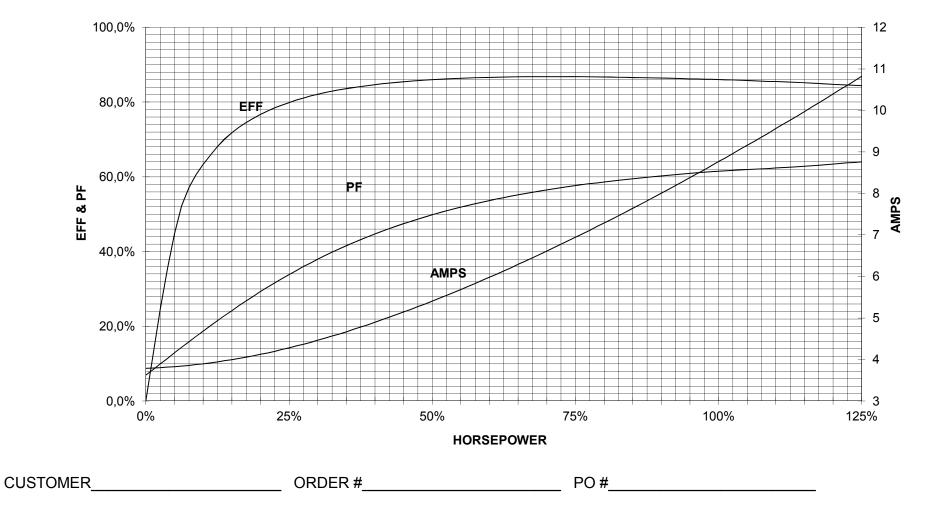
A-weighted Sound	Octave Band Center Frequencies Hertz (Hz)

Wiring	g Conne	ection In	formati	on		Special design :					
at 3 feet		46	50	64	61	57	46	39	SPwrL	75	
Pressure Level	63	125	250	500	1000	2000	4000	8000	SPL	67	

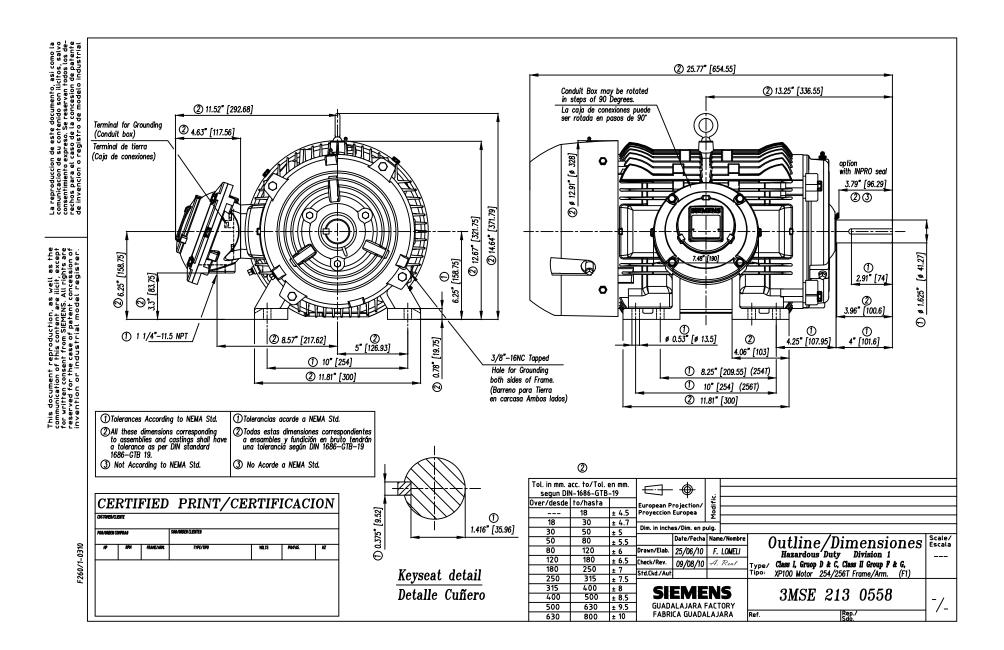

Wiring Connection Information

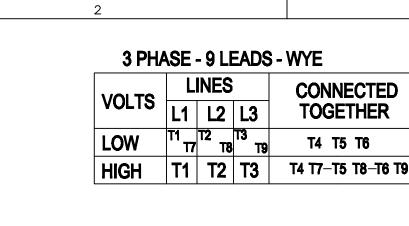
Description		3 PHASE - 9 LEAD - WYE				
Voltage	L1	L2	L3	Connected together		
LOW	T1 T7	T2 T8	T3 T9	T4 T5 T6	ΥY	
HIGH	T1	T2	Т3	T4 T7-T5 T8-T6 T9	Y	

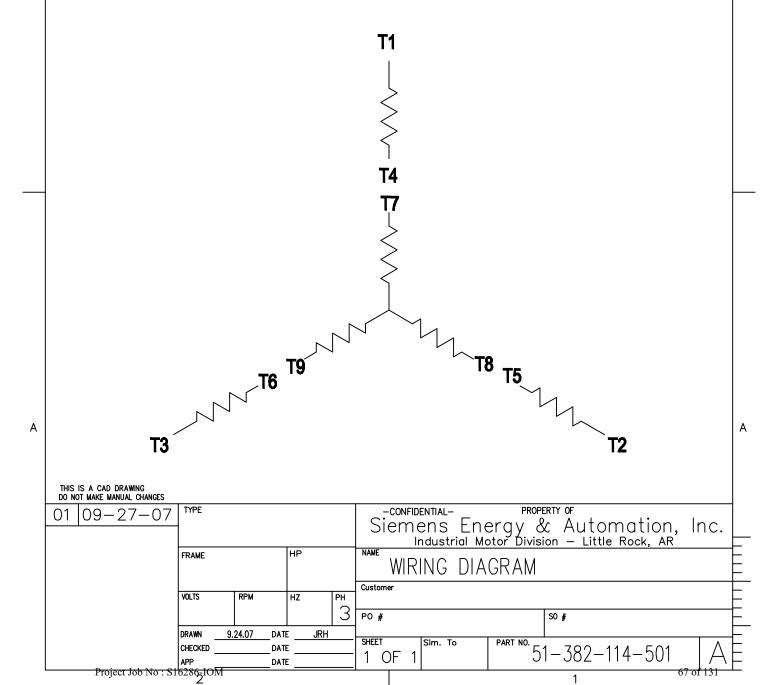
Lubrication Information


Manufacturer	Mobil Polyrex EM or equal
Туре	Polyurea (standard)
DE Capacity (oz.)	0.50
ODEnd Capacity (oz.)	0.50

Relubricate bearings every six months (more frequent if conditions require). See Instruction Manual.


% SYNCHRONOUS SPEED


SIEMENS INDUSTRY, INC. PERFORMANCE CURVE XP100



PERFORMANCE BASED ON DESIGN CALCULATIONS. SUBJECT TO CHANGE WITHOUT NOTICE.

REV. 1

1

CONN.

ΥY

Y

1

В

В

SIEMENS

NEMA Motor Data

Motors Manufactured Before JAN 18 Only Suitable for 1MB2121-2CD11-6AG3

S.F.

Amb. Temp.

Temp Code

Temp. Rise

NEMA Design B

Mtr WT (lbs)

IP

MLFB-Ordering data :

885

90.2 %

284T

3 Ph

50BC03JP30

50BC03JP30

TEFC

34.0 / 17.0 A

Client order no. : Order no. :

Offer no. :

Remarks :

Туре ΗP

Voltage

Amps

FL RPM

FRAME

DE AFBMA

ODE AFBMA

60 Hertz

Load

Efficiency **Power Factor** Current (A)

Inverter Duty

FL Efficiency

:		ltem no Consign Project	iment no. :	
Namepla	te Data		Mountir	ng and motor protection
XP100 Div.1, C	I , Groups C&D	, CII, Groups F&G	Type of construction	
10.0	Rating	Cont.	Motor protection	(G) Thermostats, Klixon type, normally
(16) 230/460V STD	Ins. Class	Insulation class F	Terminal box design	(3) Mounting - F-1

5								
deg C		Bearing Data						
2		DE	ODE					
s B	Bearing Size	6310 Z C3 S0	6310 Z C3 S0					
kVA Code H	Bearing Type	Ball Bearing	Ball Bearing					
	AFBMA	50BC03JP30	50BC03JP30					

		Mechanica	al Data		
SAFE STALL	ΓΙΜΕ	HOT (s)	15	COLD (s)	30
Rtr wt (lbs)	85.4	Rtr WK2	4.1000		
FLT (ft-lbs)	59.0	LRT (%)	161	BDT (%)	224
Ext Load Ine	rtia (WK2)) Capability	273		

SPL

Special design :

SPwrL

59

70

Typical Noise Data

54

44

37

A-weighted Sound		Oct	Octave Band Center Frequencies Hertz (Hz)					
Pressure Level	63	125	250	500	1000	2000	4000	8000

at 3 feet 49 51 54

Wiring Connection Information

Description		3 PHASE - 9 LEAD - DELTA			
Voltage	L1	L2	L3	Connected together	
LOW	T1 T7 T6	T2 T8 T4	T3 T9 T5		ΔΔ
HIGH	T1	T2	Т3	T4 T7-T5 T8-T6 T9	Δ

Lubrication Information

Manufacturer	Mobil Polyrex EM or equal
Туре	Polyurea (standard)
DE Capacity (oz.)	2.60
ODEnd Capacity (oz.)	2.60

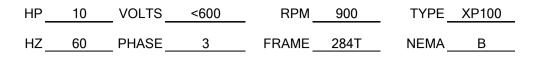
Relubricate bearings every six months (more frequent if conditions require). See Instruction Manual.

Typical Performance Data									
· 7						SAFE STALL TIME			
No Load	1/2	3/4		Full Load	LRC	C			
	88.2 %	89.8	%	90.2 %			Rtr wt (lbs)	85.4	
	42.0	53.0)	61.0			FLT (ft-lbs)	59.0	
11.0 A	12.6 A	14.8	A	34.0/17.0	81.0 A		Ext Load Ine	rtia (WK2	
VT	20	20:1 CT		4:1					

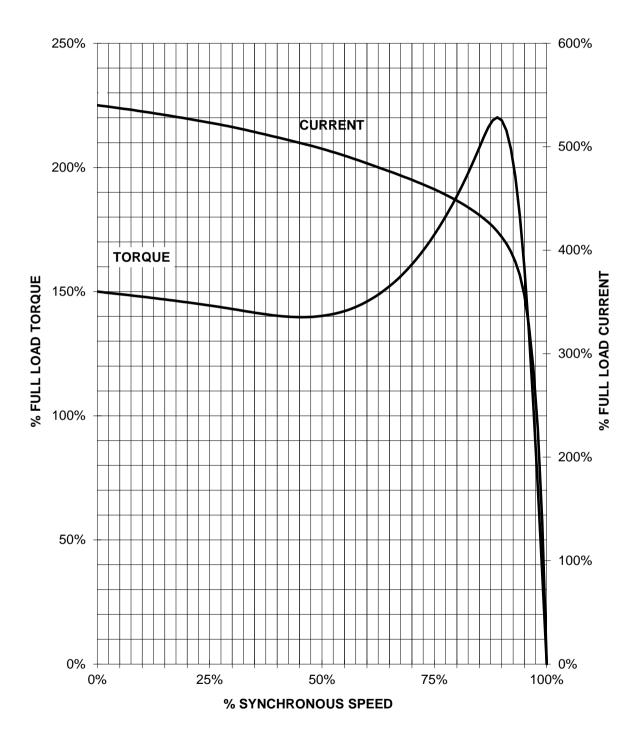
1.15

T3C

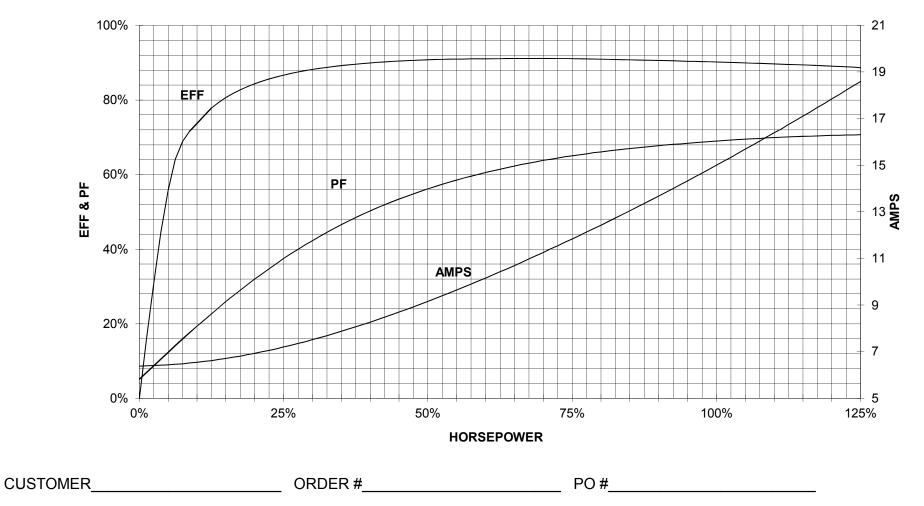
Class B


486

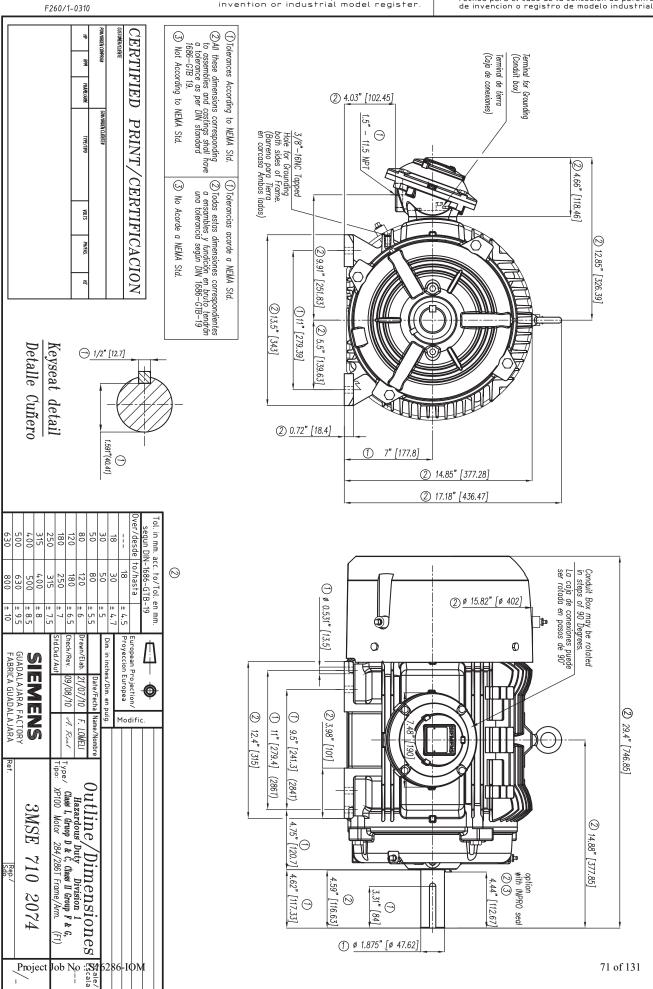
65

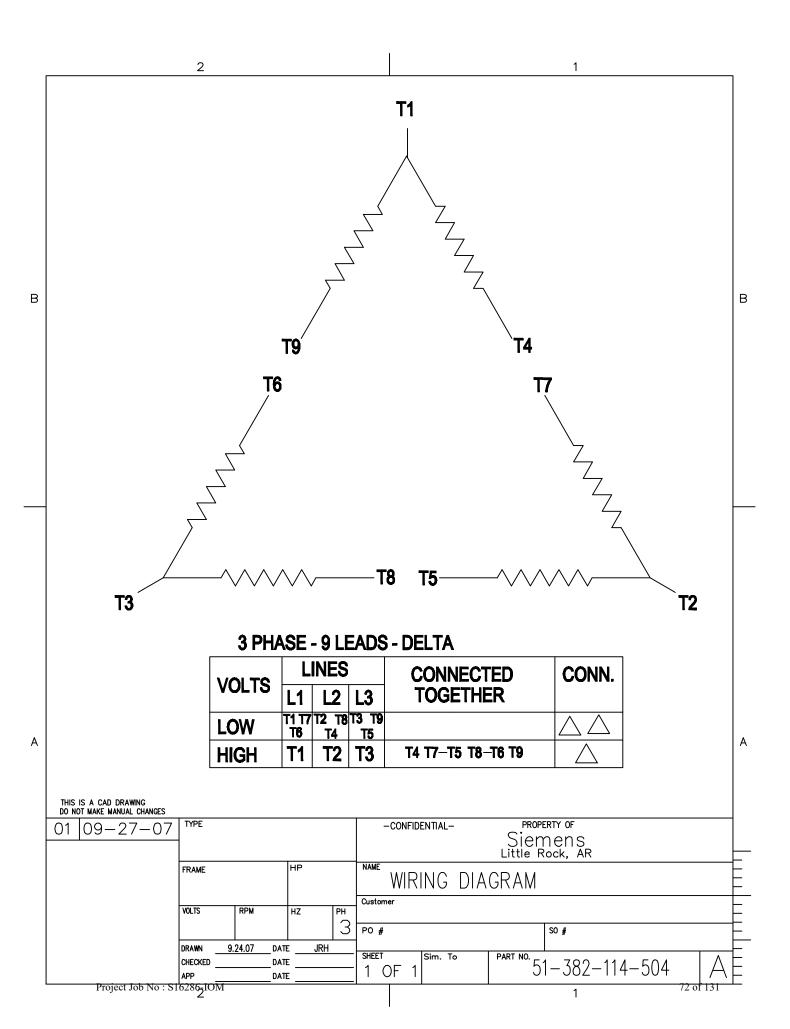

55 deg

52



SIEMENS INDUSTRY, INC. PERFORMANCE CURVE XP100




PERFORMANCE BASED ON DESIGN CALCULATIONS. SUBJECT TO CHANGE WITHOUT NOTICE.

REV. 1

This document reproduction, as well as the communication of this content are ilicit, except for written consent from SIEMENS. All rights are reserved for the case of patent concession of invention or industrial model register.

La reproduccion de este documento, asi como la comunicacion de su contenido son ilicitos, salvo consentimiento expreso. Se reservan todos los derechos para el caso de la concesion de patente de invencion o registro de modelo industrial

Installation · Operation · Maintenance

NMIM-L1000 73 of 131

SIEMENS

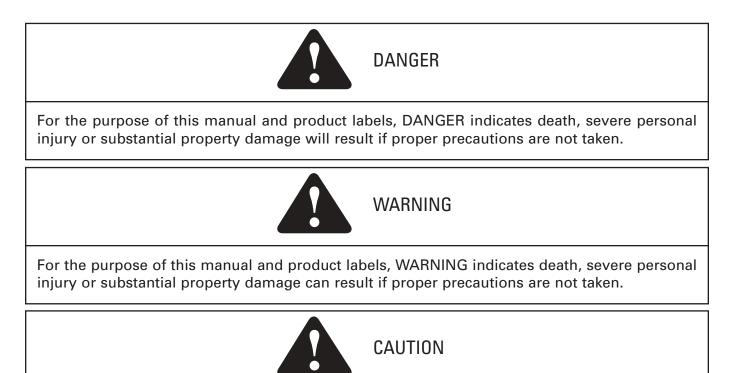
TABLE OF CONTENTS

INSPECTION
STORAGE
INSTALLATION
OPERATION
VOLTAGE REGULATION
MAINTENANCE
VERTICAL MOTOR THRUST BEARINGS8
SERVICE

These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the local Siemens Sales Office.

The contents of this instruction manual shall not become part or modify any prior or existing agreement, commitment or relationship. The sales contract contains the entire obligation of Siemens. The warranty contained in the contract between the parties is the sole warranty of Siemens. Any statements contained herein do not create new warranties or modify the existing warranty.

SIEMENS


INTRODUCTION

THIS EQUIPMENT CONTAINS HAZARDOUS VOLTAGES, ROTATING PARTS AND HOT SURFACES. SEVERE PERSONAL INJURY OR PROPERTY DAMAGE CAN RESULT IF SAFETY INSTRUCTIONS ARE NOT FOLLOWED. ONLY QUALIFIED PERSONNEL SHOULD WORK ON OR AROUND THIS EQUIP-MENT AFTER BECOMING THOROUGHLY FAMILIAR WITH ALL WARNINGS, SAFETY NOTICES, AND MAINTENANCE PROCEDURES CONTAINED HEREIN. THE SUCCESSFUL AND SAFE OPERATION OF THIS EQUIPMENT IS DEPENDENT UPON PROPER HANDLING, INSTALLATION, OPERATION AND MAINTENANCE.

QUALIFIED PERSON

For the purpose or this manual and product labels, a qualified person is one who is familiar with the installation, construction and operation of the equipment, and the hazards involved. In addition, he has the following qualifications:

- a) Is trained and authorized to energize, de-energize, clear, ground and tag circuits and equipment in accordance with established safety practices.
- b) Is trained in the proper care and use of protective equipment such as rubber gloves, hard hat, safety glasses or face shields, flash clothing, etc., in accordance with established safety practices.

For the purpose of this manual and product labels, CAUTION indicates minor personal injury or property damage can result if proper precautions are not taken.

INSPECTION

Care is taken at the factory to assure that the motor arrives at its destination in first class condition. If there is evidence of rough handling or damage in shipping, file a claim at once with the carrier and notify your Siemens Sales Office.

Examine the outside of the motor carefully for damage, with particular attention to conduit box, fans, and covers. Inspect and tighten all hardware and accessories which may have become loosened during shipping and handling. Turn the shaft by hand to be sure that it rotates freely. If the motor has been mishandled sufficiently to break external parts, the end shield should also be removed to check for internal damage unless the motor is explosion-proof. See warning below on explosion proof motors.

Explosion-proof motors—these motors are constructed to comply with the U.L. Label Service Procedure Manual. When repairing and reassembling a motor that has an underwriter's label, it is imperative that the unit be reinspected and:

- 1. All original fits and tolerance be maintained.
- 2. All plugs and hardware be securely fastened.
- 3. Any parts replacements, including hardware, be accurate duplicates of the originals.

Repair work on explosion-proof motors can only be done by the original manufacturing or U.L. certified shops. Violations of any of the above items will invalidate the significance of the U.L. Label.

STORAGE

Motors must be stored in a clean, dry, well ventilated location free from vibration and rapid or wide temperature variations. If the unit is to be stored longer than three months, consult factory. Ball bearing motors are shipped from the factory properly lubricated and ready to operate. When in storage, the motor shaft must be turned several rotations every month and the bearing relubricated every year. On non-explosion-proof TEFC motors, a removable plug in the bottom of the frame or housing permits removal of accumulated moisture. Drain regularly if storage atmosphere result in formation of condensation.

INSTALLATION

Installation must be handled by qualified service or maintenance personnel. The motor foundation must rigidly support all four feet in the same plane. Place shims under the motor feet, as required, so they will not be pulled out of plane when mounting bolts are tightened. All wiring to the motor and control must be in accordance with the National Electrical Code and all local regulations. Before drive is connected, momentarily energize motor to check that direction of rotations proper. For direct drive, accurate alignment is 0.004 inch/ft. (radius to dial indicator = one foot.)

Any change in shims requires rechecking alignment. When alignment is within limits, dowel two feet of each unit. When installing flat belt pulley, V-belt sheave, spur or helical pinion or chain drives, be certain that they are within NEMA limitations. Refer to NEMA motor and general standards, MG-1 14.07 and 14.42.

OPERATION

Repeated trial starts can overhead the motor and may result in motor burnout (particularly for across the line starting). If repeated trial starts are made, allow sufficient time between trials to permit heat to dissipate from windings and rotor to prevent overheating. Starting currents are several times running currents, and heating varies as the square of the current.

After installation is completed, but before motor is put in regular service, make an initial start as follows:

- 1. Check motor starting and control device connections against wiring diagrams.
- 2. Check voltage, phase, and frequency of line circuit (power supply) against motor nameplate.
- 3. If possible, remove external load (disconnect drive) and turn shaft by hand to ensure free rotation. This may have been done during installation procedure; if so, and conditions have not changed since, this check may not be necessary.
 - a. If drive is disconnected, run motor at no load long enough to be certain that no unusual conditions develop. Listen and feel for excessive noise, vibration, clicking, or pounding. If present, stop motor immediately. Investigate the cause and correct before putting motor in service.
 - b. If drive is not disconnected, interrupt the starting cycle after motor has accelerated to low speed. Carefully observe for unusual conditions as motor coasts to a stop.
- 4. When checks are satisfactory, operate at minimum load and look for unusual condition. Increase load slowly to maximum. Check unit for satisfactory operation.

Guard against overloading. Overloading causes overheating and overheating means shortened insulation life. A motor subjected to a 10°C temperature rise above the maximum limit for the insulation may cause the insulation life to be reduced by 50%. To avoid overloading, be sure motor current does not exceed nameplate current when nameplate voltage is applied.

Electric motors operating under normal conditions become quite warm. Although some places may feel hot to the touch, the unit may be operational within limits. Use a thermocouple to measure winding temperature when there is any concern.

The total temperature, not the temperature rise, is the measure of safe operation. Investigate the operating conditions if the total temperature measured by a thermocouple placed on the winding exceeds:

230°F (110°C) for class "B" insulation 275°F (135°C) for class "F" insulation 302°F (150°C) for class "H" insulation

VOLTAGE REGULATION

Motors will operate successfully under the following conditions of voltage and frequency variation, but not necessarily in accordance with the standards established for operation under rated conditions:

- a. When the variation in voltage does not exceed 10% above or below normal, with all phases balanced.
- b. When the variation in frequency does not exceed 5% above or blow normal.
- c. When the sum of the voltage and frequency does not exceed 10% above or below normal (provided the frequency variation does not exceed 5%).

MAINTENANCE

Failure to properly maintain the equipment can result in severe personal injury and product failure. The instructions contained herein should be carefully reviewed, understood and followed. The following maintenance procedures should be performed regularly:

- 1. Bearing lubrication
- 2. Insulation resistance check
- 3. Cleaning

This checklist does not represent an exhaustive survey of maintenance steps necessary to ensure safe operation of the equipment. Particular applications may require further procedures. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the local Siemens Sales Office.

Dangerous voltages are present in the equipment which can cause severe personal injury and product failure. Always de-energize and ground the equipment before maintenance. Maintenance should be performed only by qualified personnel.

The use of unauthorized parts in the repair of the equipment, tampering by unqualified personnel, or removal or alteration of guards or conduit covers will result in dangerous conditions which can cause severe personal injury or equipment damage. Follow all safety instructions contained herein.

BEARING LUBRICATION

CAUTION

Do not lubricate motor while in operation, since excess grease will be forced through the bearings and into the motor before it will force its way out of the drain plug. Excess grease accumulation on windings reduces insulation life.

Bearing life is assured by maintaining proper alignment, proper belt or chain tension, and good lubrication at all times.

Prior to shipment, motor bearings are lubricated with the proper amount and grade to provide six months of satisfactory service under normal operation and conditions.

For best results, grease should be compounded from a polyurea base and a good grade of petroleum oil. It should be of No. 2 consistency and stabilized against oxidation. Operating temperature range should be from -15°F to +250°F for class B insulation, and to +300°F fir class F and H. Most leading oil companies have special bearing greases that are satisfactory.

Relubricate bearings every six months (more often if conditions require), as follows:

- 1. Stop the motor. Lock out the switch.
- 2. Thoroughly clean off pipe plugs and remove from housings.
- 3. Remove hardened grease from drains with stiff wire or rod.
- 4. Add grease to inlet with hand gun until small amount of new grease is forced out of drain.
- 5. Remove excess grease from ports, replace inlet plugs, and run motor 1/2 hour before replacing drain plug.
- 6. Put motor back in operation.

INSULATION RESISTANCE

Check insulation resistance periodically. Any approved method of measuring insulation resistance may be used, provided the voltage across the insulation is at a safe value for the type and condition of the insulation. A hand cranked megger of not over 500 volts is the most convenient and safest method. Standards of the Institute of Electrical and Electronics Engineers, Inc. (IEEE) recommended that the insulation resistance of stator windings at 75°C, measure at 500 volts DC, after one minute should not be less than:

<u>Rated voltage of machine + 1000</u> = Insulation resistance in Megohms 1000

This formula is satisfactory for most checks. for more information, see IEEE Standard No. 43, "Recommended Practice for Insulation Resistance Testing of AC Rotating Machinery."

CLEANING

WARNING

Do not attempt to clean motor while it is operating.. Contact with rotating parts can cause severe personal injury or property damage. Stop the motor and lock out switch before cleaning.

The motor exterior must be kept free of oil, dust, dirt, water, and chemicals. For fan cooled motors, it is particularly important to keep the air intake openings free of foreign material. Do not block air outlet or inlet.

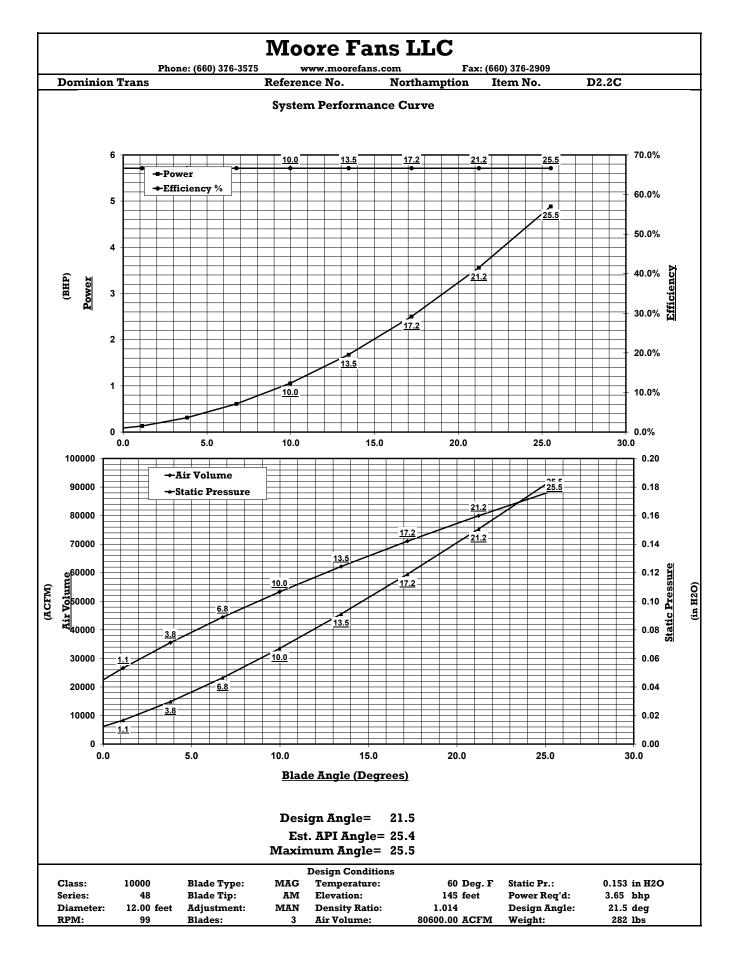
On non-explosion-proof TEFC motors, a removable plug in the bottom center of the motor frame or housing permits removal of accumulated moisture. Drain regularly.

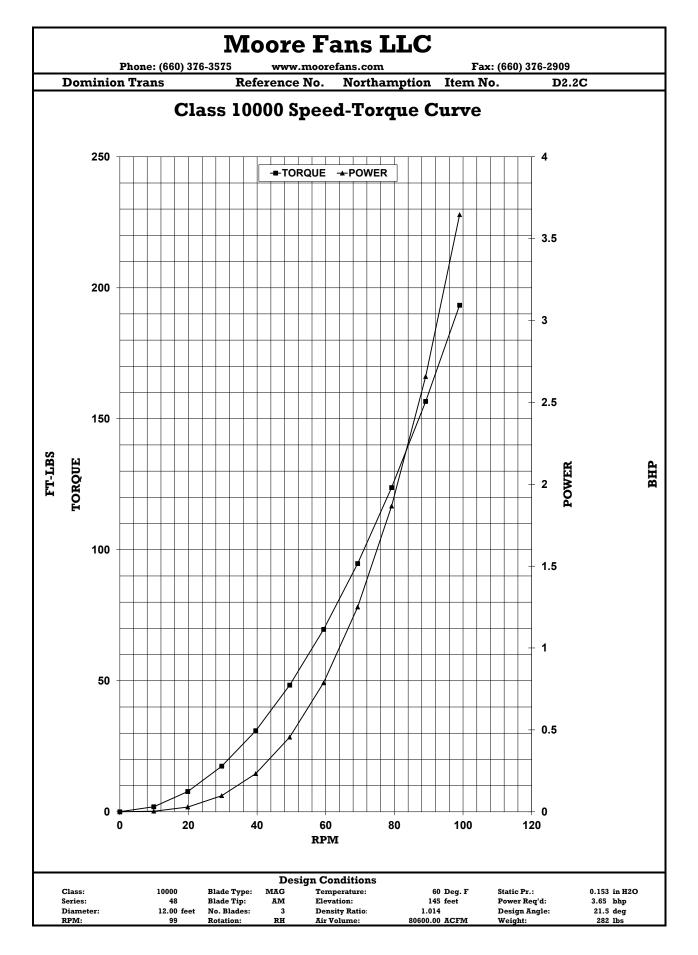
VERTICAL MOTOR THRUST BEARINGS

Top bearings — high external thrust from the driven unit is usually carried by he top bearing or bearings. If replacement is necessary, the new bearing must be the same size and type as the original. Duplex bearings must also be the same type and mounted in an identical manner. When angular contact type bearings are replaced, the new bearing must have the same thrust capacity.

Bottom bearings — grease lubricated lower bearings adequately lubricated at the factory for at least three months operation. The relubrication procedure is the same as outlined above under "Bearing Lubrication." It is important to maintain the lower cavity full of grease at all times.

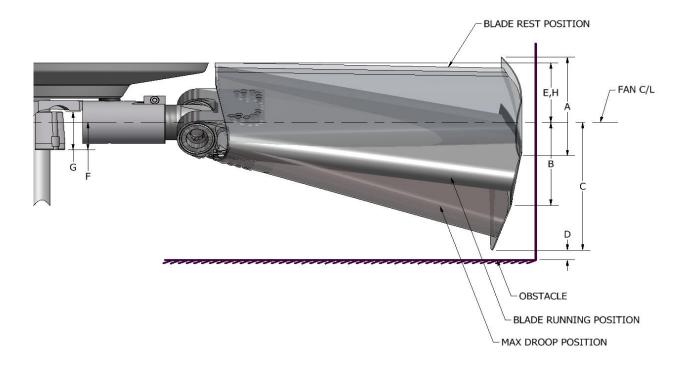
The correct replacement bearings are given on the nameplate by AFBMA (Anti-Friction Bearing Manufacturers Association) number.


SERVICE


For immediate action on your motor problems call your certified service center or contact your nearest Siemens District Office.

Siemens Energy & Automation, Inc. Industrial Products Division 14000 Dineen Drive Little Rock, Arkansas 72206

© 2001 Siemens Energy & Automation, Inc.


Phone: (660) 376-3575			http://www.r	noorefans.c	<u>com</u>	Fax:(660) 376-2909			
			Version	2.21					
			12/3/2016	10:52					
Dominion Trans	6B286		Ref No.:	Northam	ption	Item No:	D2.2C		
Class:	10000		Hub Type:	HD		Blade Type:	MAG		
Blade Tip:	AM		Adjustment:	MAN		Rotation:	RH		
Series:	48			Diameter: 12 feet Blades:			3		
Temperature:		Deg. F	Elevation:	145		Density Ratio:	1.014		
Volume:	80600 <i>I</i>	-			Speed:	99 RPM			
Static Pressure:	0.153 i	-	Pv:	0.038 in H2O		Pt:	0.191 in H2		
Power Reqd.:	3.65 k	ohp	Motor:	5	bhp	Total Eff:	66.7%		
						Static Eff:	53.3%		
Blades Required:	2.76		API Blades Req.:	3		Blade Load:	0.922		
Fip Speed:	3732.2 f	pm				Pitch Number:			
Entry Correction:	1		Tip Clearance:		inches	Design Angle:		deg	
Exit Correction:	1.00		Draft:	Forc		Orientation:	Horiz		
Forque Factor:	2		Motor Torque:		ft. lbs	Torq/Bld: 177 ft.			
Appr fan weight:	282 1			8 kg		Bore Size:	inches		
WR2	4051 1		171.1 kg m2			Bushing Type:	• ••		
Thrust Load:	112 1			l kg		Qty required:	12		
Noise Levels Per Fa	in (Forced Drai	ft) (Hor			e 2				
1			Sound Powe						
dBA	HZ 63	125	250	500	1000		4000	8000	
74.7	72.2	75.7	73.5	70.8	69.1	67.1	64.2	62.2	
		a	1		6				
co c	50.1		d Pressure Level			53.0	50.1	40	
60.6	58.1	61.6	59.4	56.7	55.0	53.0	50.1	48.1	
	Sour	d Drog	sure Level 1 mete	r radially fr	om blad	o tin			
55.6	53.1	56.6	54.4	51.7	50.0	48.0	45.1	43.	
55.0	55.1	30.0	31.1	51.1	50.0	40.0	45.1		
F	stimated Sound	Press	ure Level Multiple	Fans (3 fan	s at 50 ft	from periphery	7)		
44.6	42.1	45.6	43.4	40.7	39.0	37.0	34.1	32.1	
		1010				0110	• • • •	0	
I	Cla	ss 1000	0, Series 48, 12 f	eet Diamet	er, 3 Bla	ades			
			ient, Heavy Duty						
With AN	I Blade Tips,			, -, .					
		1 Mode	el No. 1048/094-U	0-A/48R-AI	M-9-12.	00-3			
	Fan Dra	awing:	http://moorefans	.com/pdfs/	TMC 85	7 B.pdf			
		-	blade angle to pi						
			wer may limit m			-			

Moore Class 10000 Heavy Duty Standard Chord (SC) and Extended Chord (EC) Blade Droop and Clearance Dimensions

Class	10000 Heavy Duty				A= Blade tip pr	ofile height at sp	ecified design	angle (Path Wi	idth)	
Series	48		B=Blade running droop at specifed RPM and Blade Load (C/L to bottom of blade)							
Diameter (Ft)	12.00		C= Maximum droop position of blades (C/L to bottom of blade)							
Blade Chord	MAG		D= Minimum recommended obstacle clearance on air inlet side							
Туре	MAN		E=Maximum height of blade at design angle. (C/L to Air Outlet Side)							
Orientation	Horizontal		$\mathbf{H_{l}}$ =Maximum height of blade at max. recommended angle (C/L to Air Outlet Side)							
Bushing Type	U		${f H_2}$ =Maximum height of blade at 30 degrees (C/L to Air Outlet Side)							
RPM	99		\mathbf{F} = Fan centerline to Base of Bushing (Standard hub without extension)							
Blade Load	92.2%		G= Overall bushing height							
Design Angle	21.5		S= Air Seal Diameter							
Blade Tip	AM									
			(All	dimensions sh	own are in inches	5)				
A	В	С	D	E	H₁	H ₂	F	G	S	
7.6	2.7	3.2	2.0	5.7	6.2	6.9	2	2.7	47	

CLASS 10000 FANS OWNER'S MANUAL

CONTENTS

1.0 CLASS 10000 FANS OWNER'S MANUAL **1.2 INSPECTION** 2.0 INSTALLATION 2.2 INSTALL MANUAL HUB AND AIR SEAL **2.3 AUTOMATIC HUB AND AIR SEAL** 2.4 INSTALL PNEUMATIC TUBING 2.5 INSTALL AND ADJUST BLADES 2.6 START-UP PROCEDURES **3.0 MAINTENANCE 3.1 PERIODIC INSPECTION 3.2 ANNUAL INSPECTION 3.3 VIBRATION AND UNBALANCE** 3.3.5 THROAT FLUTTER **3.4 WARRANTY** 3.3.6 FIELD BALANCING **3.5 MANUAL FAN PARTS LIST 3.6 AUTOMATIC FANS PARTS LIST 4.0 OPERATION 4.2 BLADE OVERLOAD 4.3 CAUSES OF IMPROPER BLADE LOADING 4.4 CHECKING BLADE LOAD 4.4.1 SAMPLE GRAPH OF BLADE ANGLE IN DEGREES** 4.5 DAMAGING OPERATING CONDITIONS **4.5.3 OBSTRUCTIONS**

FAX (660) 376-2909

E-MAIL info@moorefans.com

Page 1

1.0 CLASS 10000 FANS OWNER'S MANUAL

1.1 ABOUT THIS MANUAL

Moore is as interested, as are its customers, that Moore fans operate at top efficiency for many, many years. This manual has been written to achieve that result and is based on more than fifty years of experience as a manufacturer of axial flow fans.

Moore fans represent the highest degree of axial fan development and are in all respects, regardless of price, the finest obtainable for their intended purpose. As for any fine equipment, certain precautions are necessary and certain abuses must be avoided in order to insure the best performance over the longest period of time If you have any questions regarding the installation or operation of your Moore fan(s), please contact the Company for assistance.

1.2 INSPECTION

All Moore units are carefully balanced, inspected

and packed at the factory. If any damage is evident before or after unpacking, the delivering carrier should be promptly notified so that an inspection may be made by the claims adjustor. It is the responsibility of the consignee to file damage claims with the carrier. Although Moore will not be responsible for shipping damage, it is requested that any damage, even of a minor nature, be reported to the factory at once.

1.3 IDENTIFY YOUR FAN'S FEATURES

The installation instructions which follow will include some steps for installing fans with features not provided on your unit(s). Section 2 Getting Started should be read carefully before installation begins. Moore fans have several unique features. Those unfamiliar with these units should read the short summary of these important features on the last page of this manual.

2.0 INSTALLATION 2.1 GETTING STARTED

2.1.1 FAN IDENTIFICATION

Every fan, or group of identical fans, is assigned a Job Number. This number will be found on the Order Information Sheet showing fan specifications. A copy is attached to this manual. If non-identical fans are shipped together, a Job Number is assigned to each fan or group and a set of Information Sheets will be included for each Job Number.

The Job Number is written in semi-permanent ink on each blade, hub and air seal. All fan parts bearing the same Job Number are entirely interchangeable. (Blades of the same Series and Diameter are also interchangeable between Job Numbers.)

Fan components covered by more than one Job Number may be crated together. The Job Number that is written on each part, however, will make sorting simple.

Each individual fan produced by Moore is assigned a Serial Number. This Serial Number is embossed on a permanent metal tag and attached to each fan hub. The Fan Information Sheet provided for each Job Number lists all of the individual Serial Numbers of the identical fans covered by that Job Number so that, in future years, reference to the fan specifications provided will identify the characteristics of each individual fan.

Moore keeps records indexed by serial and job

numbers of all fans produced for at least forty years in order to provide proper maintenance advice and information on spare parts and replacements.

2.1.2 PLANNING THE INSTALLATION

The sequence given for the installation may be changed if the conditions warrant. For example, the air seal may be installed on the hub before the hub is installed on the drive shaft. (In fact, for inverted fans, it is necessary to install the air seal first.) The installation should be planned before beginning so that the steps required are taken in the most convenient order. If you need information not found here, please contact Moore.

Class 10000 fans are suitable for horizontal or vertical mounting, for electric motor or engine drive and may be designed for clockwise (right hand) or counterclockwise (left hand) rotation. **Note: Automatic fans can only be installed for horizontal applications.** (*Vertical shaft*)

Some drawings illustrating the installation assume vertical mounting and need to be mentally rotated for horizontal mounting. Be sure to refer to the dimensional drawing(s) provided. These will illustrate the proper orientation of the fan and the rotation direction.

Once the

Air Seal Installed on Hub

Install the bushing in the hub by aligning the threaded

holes on the I.D. of the hub with the slots on the OD of

the bushing with the cap screws captured between the

bushing and the hub. Insert the bushing in the hub.

Using a hex key wrench, sequentially tighten the

socket head cap screws until the bushing is almost fully

engaged in the hub. Leave slight play between the

bushing and hub to facilitate installation on the shaft.

Place the hub/bushing on the shaft. (Preferably cap

screw heads will be towards free end of shaft.) Insert

the key, and tighten the setscrew to secure the hub and

key to the shaft. Now begin sequentially tightening the

socket head cap screws (approximately 2-3 turns per

cap screw initially) to firmly engage the bushing in the

bushing/hub is firmly seated on the shaft, continue

tightening the cap screws sequentially until the speci-

fied torque, shown in the following table, is reached.

DO NOT over-tighten cap screws as this could cause

Caution:

If bushing is expected to see frequent oscillating loads

(Greater than 50% of nominal expected Static Torque), Fan

should be operated for approximately 15 minutes and then

fan, cut out the center to provide clearance for the bushing. Locate the air seal installation hardware in the plastic bag taped to one of the hub tubes. Install the air seal studs

on the appropriate side of the hub tube. Finger tighten. Place one resilient washer on each stud as shown in

the drawings at left. Place the air seal onto the studs and install the remaining hardware, following the sequence

shown in the drawings. Do not lubricate this end of the

they are compressed, is slightly less than the diameter of the aluminum washer. Tighten each nut until the resilient washer's diameter is the same as the aluminum washer. Do not overtighten. Overtighteness exists when the resilient washer has expanded in diameter larger than the diameter

Note: Some air seals are provided with more mounting

holes than may be required. This is done intentionally to make the air seals more interchangeable between

units. For example, an air seal with 8 mounting holes

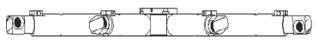
can be used with either a 4-blade or an 8-blade unit.

Note that the diameter of the resilient washers, before

If the airseal is to be installed on the shaft side of the

hub and seat the bushing on the shaft.

damage to the hub.


To install the airseal:

of the aluminum washer.

re-torque bushing cap screws.

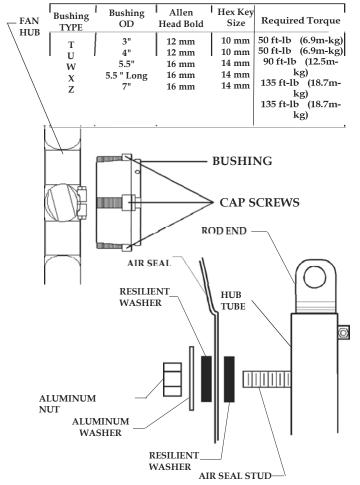
2.2 INSTALL MANUAL HUB AND AIR SEAL

Installation:

Hub Only Without Air Seal

Hub installation instructions

Moore Class 10000 hubs are shipped with Moore Hi-Torque (HT) Aluminum Bushings. The following paragraph details the installation procedure for these hubs.


Lubrication:

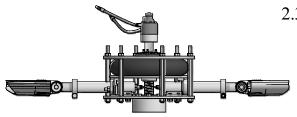
If the bushing was pre-installed in the hub at the factory, no further lubrication is required prior to installation.

If the bushing was not installed in the hub at the factory, it is imperative to apply high quality grease to the following surfaces:

- 1. The cap screw threads
- 2. The underside of the cap screw heads
- 3. The bushing taper / hub bore

DO NOT apply lubricant between the bushing bore and the shaft.

AIR SEAL INSTALLATION ON HUB


TMC-704 Rev J- 7/08

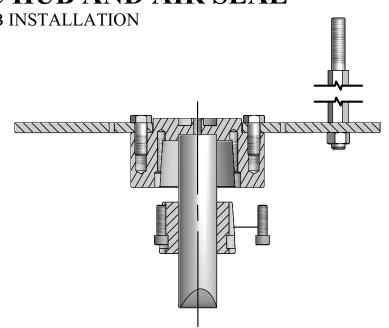
studs.

2.3 AUTOMATIC HUB AND AIR SEAL

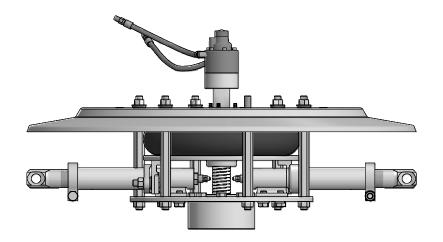
2.3.1 HUB INSTALLATION

AUTOMATIC HUB ONLY WITHOUT AIR SEAL

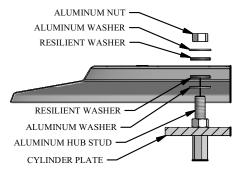
IF BUSHING IS NOT PRE-INSTALLED INTO HUB


Install the bushing in the hub by aligning the threaded holes on the I.D. of the hub with the slots on the OD of the bushing with the cap screws captured between the bushing and the hub. Insert the bushing in the hub. Using a hex key wrench, sequentially tighten the socket head cap screws until the bushing is almost fully engaged in the hub. Leave slight play between the bushing and hub to facilitate installation on the shaft.

IF BUSHING IS PRE-INSTALLED INTO HUB


Place the hub/bushing on the shaft. Insert the key, and tighten the setscrew to secure the hub and key to the shaft. Now begin sequentially tightening the socket head cap screws (approximately 2-3 turns per cap screw initially) to firmly engage the bushing in the hub and seat the bushing on the shaft. Once the bushing/hub is firmly seated on the shaft, continue tightening the cap screws sequentially until the specified torque, shown in the following table, is reached. DO NOT over-tighten cap screws as this could cause damage to the hub.

To install **air seal** locate the air seal installation hardware in the plastic bag taped to one of the hub tubes. Remove the protective plastic caps from the bolts or studs. Place one aluminum washer and one resilient washer on each bolt or stud as shown in the drawings. Lower the air seal onto the bolts or studs and install the remaining hardware, follow the sequence shown in the drawings. Do not lubricate the end of the bolts or studs.


Note that the diameter of the resilient washers before they are compressed, is slightly less that the diameter of the aluminum washers. Tighten each nut until the resilient washer's diameter is the same as the aluminum washer. Do not overtighten. The nut is overtightened when the resilient washer has expanded in diameter larger than the diameter of the aluminum washer.

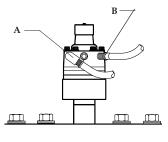
FAN SERIES	BUSHING TYPE	BUSHING OD	ALLEN HEAD BOLT	HEX KEY SIZE	REQ'D TORQUE
24	Т	3"	12mm	10mm	50 ft-lb (6.9 m-kg)
30-72	U	4"	12mm	10mm	50 ft-lb (6.9 m-kg)
30-72	W	5.5"	16mm	14mm	90 ft-lb (12.5 m-kg)

AIR SEAL INSTALLED ON AUTOMATIC HUB WTH POSITIONER

AIR SEAL INSTALLATION ON AUTOMATIC HUB

2.4 INSTALL PNEUMATIC TUBING 2.4.1 AUTOMATIC HUB WITH STANDARD POSITIONER

Connect the special flexible hoses provided to the instrument port "A" and the supply port "B" shown in the drawing. Use the elbow provided on one hose so that the hoses will be parallel. Support the positioner while tightening all fittings to prevent rotary union damage.

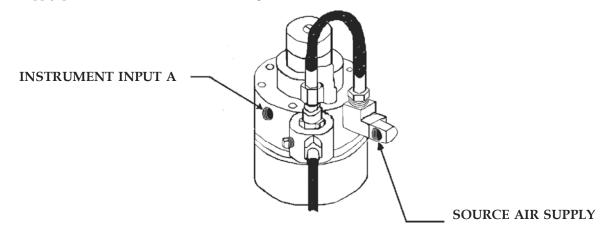

The flexible hoses supplied must be used and a slight amount of slack should be left when connecting to rigid piping to relieve any abnormal loading of the rotary union internal bearings and seal.

The ends of the hoses must be capped if not coupled to the system piping immediately. The flexible hoses provided terminate in 1/4" N.P.T. male fittings.

Flexible Hoses Connected to Supply and Instrument Ports on Positioner

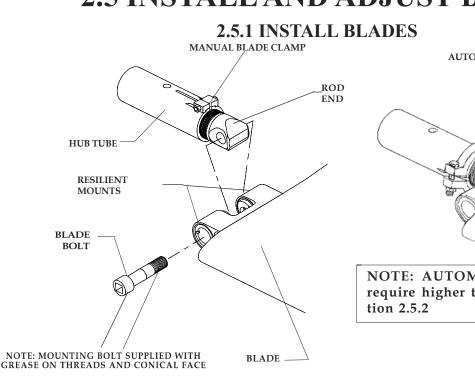
Pressure Requirements					
P.S.I. Kg/Cm ²					
Control	3 to 15	0.21 to 1.05			
	(Std)	(Std)			
Supply	55	3.9			

MAXIMUM SUPPLY PRESSURE: 60 P.S.I. (4.2 Kg/Cm²)



2.4.2 FOR POSITIONER WITH FAIL LOCKED IN LAST POSITION

When a fan is specified to fail locked in last position, pressure is retained in the actuator chamber if the system pressure falls abruptly. This retained pressure prevents the blade angle from changing when a failure occurs in the system supply pressure.


Connect hoses "A" to the instrument port as described in 2.4.1. Hose "B", which is normally connected to the supply port is to be connected to the fitting labeled "source air supply". The flexible hoses provided must be used and a little slack must be left in them to prevent damage to the bearing or seal in the rotary union.

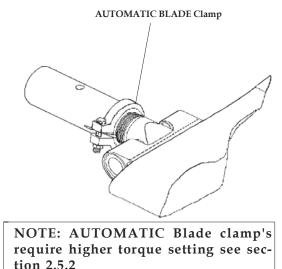
When the system is charged, normal pressure at the valve keeps it in the open position and flow occurs in either direction between the positioner and the supply actuator. If the system pressure fails, the valve automatically closes, retaining pressure in the actuator.

Note:

After installing hub onto bushing: Check the hub and positioner for run out. Maximum run out of positioner in the horizonal direction is $\pm \frac{1}{8}$ " (3mm) If outside the tolerance adjust the bushing nuts slightly to level the fan hub.

2.5 INSTALL AND ADJUST BLADES

BEFORE INSTALLING BLADES....


Check to see that the hub is level. If the drive shaft is not truly horizontal (or vertical), causing the hub to be cocked, it will be difficult to adjust blade angles accurately. Eccentric rotation of the fan can also cause serious vibration problems.

If misalignment, vibration or unbalance in the system is present, it will be more easily identified and corrected at this time.

Moore fan blades are carefully balanced to the same moment at the factory. Any Class 10000 blade of the same series and diameter may be installed on any hub furnished on the job. They are completely interchangeable.

Moore Class 10000 Heavy Duty Fans are designed for engine drive and other applications with the more severe requirements of this service. Proper installation, with particular attention to tightening nuts to the specified torque, is essential to maintain the design integrity of these units.

Install one blade: Clean any dirt or grease from the rod end and the surfaces of the resilient mounts. Align the rod end hole with the holes in the resilient mounts and insert the blade mounting bolt first through the resilient mount with the recess to accept the bolt head, then through the rod end hole and screw the bolt into the second resilient mount

lightly. A 3/4" drive torque wrench with a short extension may be used. The blade mounting bolt is supplied from the factory with grease on the threads and conical face. **Do NOT clean the grease from the bolt.**

Complete the installation of one blade by holding the blade so that the blade extends straight out from the hub tube. Holding the blade in this position, tighten the bolt using a torque wrench set to 200 ft-lb (28 m-kg) making sure the rod end and the resilient mounts seat.

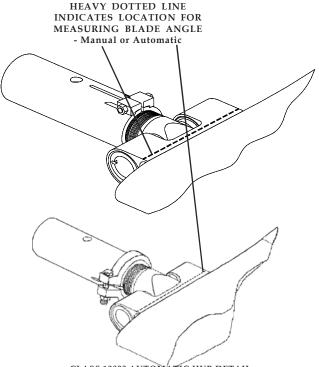
After installing the first blade, manually rotate the fan while moving the blade tip in and out to be sure the blade clears the ring or throat at all points. When the blade is held in alignment with the blade tube (that is, straight outward from the hub), it should clear the fan ring by a distance adequate to provide for any relative motion between the fan wheel and the ring. Excess clearance between the blade tips and the ring, however, should be avoided to prevent backflow which seriously reduces fan efficiency. If clearance is excessive, the diameter may be adjusted at this time. See Section 2.5.2.

Install the rest of the blades so that they are identical with the first blade. **Torque all bolts to 200 ft-lbs (28 m-kg).** If blades are installed properly, they will return to their undisturbed position if the tips are pressed in the axial direction with moderate force (10 to 20 lb).

2.5.2 ADJUST BLADE ANGLE

Hubs are shipped from the factory with the rod end set for the blade angle indicated by the design performance. A change in blade angle is sometimes necessary, however, to adjust to actual site conditions. Failure to adjust the blade

angle when required may result in blade overload. The causes of improper blade loading are explained in Section 4.3 of this manual. Section 4.4 "Checking Blade Load" provides a simple method of determining the maximum


MOORE FANS LLC, Marceline, MO 64658 Phone (660) 376-3575 FAX (660) 376-2909

blade angle allowable in terms of static pressure vs blade angle. Please refer to these sections before increasing blade angle.

To adjust, loosen the Clamp Nut just enough to allow the blade to be turned. Place a inclinometer on the flat surface of the mounts end as shown in the illustration at right. Turn the blade until the desired angle is achieved.. Make a permanent record of the final angle selected and take care that all blades on the fan are set at the same angle. A typical adjustment may be $+/-3^{\circ}$. The maximum recommended blade angle is 30°.

Retighten the Clamp Nut to <u>18 ft-lbs (2.5 m-kg) for</u> <u>Manual</u> and <u>50 ft-lb (7 m-kg) for the Automatic</u> while holding the blade in this position. <u>Recheck each blade</u> <u>angle before tightening</u>.

WARNING: The fan is designed to consume the horsepower stated on the Fan Specification Sheet. The engine drive typically produces far more power than the fan can absorb. Too great an increase in blade angle can cause serious blade overload which will stall the blades. In this condition, the fan will actually deliver less air and blade life may be shortened. Blade load considerations are discussed in Section 4.0 Operation in this manual.

CLASS 10000 AUTOMATIC HUB DETAIL NOTE: CLAMP DIFFERENCES

2.5.3 ADJUST DIAMETER IF REQUIRED

At times it may be necessary to adjust the fan diameter to suit a particular ring. To do so, loosen the clamp nut so that the rod end can be rotated in the hub tube. One complete revolution will increase or decrease the radius of the fan by .059" (1.5 mm) for manual and .087" (2.2 mm) for automatics. Take care that the clevis is returned to exactly the factory-set angle unless it is intended that the blade loading be changed as discussed in the previous section. A match mark may be made at a point on the threads and the tube before turning to assure that exactly one revolution is made. Tighten the clamp nut to 18 ft-lbs (2.5m-kg) for manual and 50 ft-lbs (6.9m-kg) for the automatic.

Maximum adjustment possible is about +/- 0.75" (19 mm). At least 1.0" (25 mm) of rod end threads must remain in the tube.

2.6 START-UP PROCEDURES

Before starting the fan, manually check all bolts or nuts to see if they are tightened. Take care not to exceed the stated torque limits.

Manually rotate the fan while checking each blade for proper clearance.

Start the fan and watch it in operation. All blades should move to the same operating position, indicating that the blade angles are properly set and that all blades are equally loaded. If vibration or unbalance is evident, see Section 3.3.

After the fan has been operating for several minutes,

stop the fan and observe the blades as the fan comes to rest. All of the blades should return to their original position at the same rate.

Inspect the inner surface of the fan ring and the blade tips for any indication of scoring.

The horsepower given on the Fan Specifications is the calculated horsepower (at the fan shaft) that is required for the specified performance. Consult the factory or the fan curve before increasing the blade angle for the fan to consume more than the specified horsepower.

3.0 MAINTENANCE 3.1 PERIODIC INSPECTION

3.1.1 PURPOSE

Fan failure is most likely the result of destructive repetitive stress acting over a period of time. These stresses may be caused by mechanical abuse, e.g. rough gears or drive shaft imbalance, or by aerodynamic abuse such as blade overload or abnormal flow conditions. Fortunately, these stresses manifest themselves in typical ways that may easily be detected on inspection if one knows what to look for. The purpose of this section of this manual is to describe the symptoms of potentially damaging mechanical problems and how they can be corrected. Aerodynamic abuses are covered in Section 4.0 Operation.

3.1.2 FREQUENCY OF INSPECTION

The frequency of inspection varies widely in accordance with the severity of service and a suitable inspection schedule should be developed with experience over time. During the first week of operation, at least one inspection should be made. At these initial inspections, in addition to the items listed below, check all nuts for tightness to make certain that all were tightened properly at installation. Take care not to exceed the stated torque limits. Following the first week, it is probable that inspections of the fan need be made no more freqently than inspection of the drive.

3.1.3 BLADE ANGLE AND RUNNING POSITION

Turn off the unit and watch the blade tips. A looseness in the clamp bolt will permit a blade to flatten in angle. This usually can be detected by looking at the tips of the blades while the fan is slowing down. At the same time, before the unit comes to a complete stop, watch the track of the blade tips to see that all blades move to the same operating position. If one or more blades is at a substantially different position than the other blades, or if all of the blades are at a different position than at the last inspection, investigate further. This condition may be caused by a damaged resilient mount, requiring blade replacement.

3.1.4 CRACKS, DENTS AND CORROSION

Skin cracking may be caused by the tips dragging on the fan ring, or it may be the result of long-term fatigue due to continued operation under conditions of vibration or unbalance as discussed in Section 3.3 which follows. Skin cracking can also be caused by continued operation under overload conditions as discussed in Section 4.3 Causes of Blade Overload.

Cracking in air seals can occur if the airseal has been improperly installed. See Section 2.2. Check to be sure the resilient washers are present and the nuts properly tightened.

The fatigue strength of materials, whether metal or plastic, may be lowered by long-term exposure to water.

Dents in blades are caused by objects falling into the fan or the fan striking some obstacle. Minor dents may sometimes be repaired by drilling a small hole in the center of the dent and pulling outward on the blade skin. Blades may be ordered from the factory for replacement. If there is any evidence of this type of damage, the hub should be carefully inspected as discussed in Section 3.1.6 which follows.

The Type 5052 aluminum, a marine alloy, used as the blade material on Moore fans works well with either fresh or sea water. Waters that are acid, alkaline, or contain copper salts, however, should be avoided for all aluminum alloys. If you have questions regarding the suitability of the fan materials under certain water conditions, please contact the factory.

3.1.5 HUB INSPECTION

If damage to the fan has occurred, the hub should be carefully inspected since subtle damage may have been caused that is not readily apparent. Check the hub for any sign of bending or twisting of the hub tubes. Hub tubes cannot be replaced in the field on manual fans and a new hub should be ordered.

Bushings are frequently cracked during a fan wreck and should be carefully inspected. Damage may occur to the studs that attach the hub to the bushing. It is a good idea to replace the studs when replacing a damaged fan blade.

As with any industrial equipment, before entry into fan chamber, strict adherence to <u>ALL</u> Lock-out / Tag-out procedures is well advised!

Page 8

3.2 ANNUAL INSPECTION

3.2.1 CLEAN BLADES IF INDICATED

A smooth blade surface is essential for efficient fan performance. If an incrustation forms on the blades it should be removed. Use steel wool as an abrasive along with a mild detergent or a very mild form of solvent. Lye must not be used because it attacks aluminum readily.

3.2.2 CHECK SYSTEM PRESSURE

Radiator sections may be effected by the accumulation of dust and dirt in some atmospheres. (Cottonwood seeds are particularly troubling.) These accumulations may significantly increase the static pressure. Adjust the blade angle if necessary as described in Section 4.4 Checking Blade Load.

3.2.3 CLOSE INSPECTION

The yearly inspection should be a very thorough one. All nuts and bolts should be checked and careful scrutiny given to all highly stressed areas.

Inspect the resilient mounts as follows: With the fan turned off, grasp each blade and feel for looseness at the mount. If in doubt, the blade should be removed and the mount assembly visually inspected. Wear is indicated by a fretting effect and the resilient mount material will show signs of extruding from the cavity. If these indications are not apparent, replace the blade and continue normal operations.

Inspect the blade tips for any signs of cracking and the fan ring for any scoring that might indicate that the blades have been striking or rubbing against the fan ring.

3.3 VIBRATION AND UNBALANCE

3.3.1 GENERAL

No piece of rotating equipment is perfectly balanced. It is always possible that the minute unbalances of the various components may combine to provide a noticeable lack of balance. This rarely occurs, since it is unlikely that all unbalanced components will become assembled with their heavy sides in the same direction. Nevertheless, if unbalance is noted, the various components should be rotated into different positions to see if this might cure the unbalanced condition.

If vibration or unbalance occur, either at the time of installation or later during the operation of the unit, its cause may be determined by following the directions below.

3.3.2 FAN UNBALANCE

Vibration is most likely to be caused by the fan if the blades are not set at the same angle. If the blades are properly set, the fan is the least likely cause of vibration. All fan components are balanced to within ± 0.2 ft-lbs.

If the fan is in an unbalanced condition, the frequency of vibration of the structure will be that of the RPM of the fan and is quite low. In the case of large fans, the frequency is often low enough to be mentally counted along with the rotation of the fan. A vibration of 500 RPM or less will be felt as a weave in the structure rather than a vibration. Below 400 RPM, the vibration may be mentally counted and above that point may be read with a frequency meter.

Before assuming fan unbalance, check for loose bearing seats or bearings journaling the shaft on which the fan is mounted. This condition will cause the shaft to rotate eccentrically, throwing the weight of the fan offcenter, resulting in unbalance of the frequency of the fan RPM.

After all checks have been made and the fan is still determined to be unbalanced, field balancing may be accomplished as described below in Section 3.3.6.

It should be noted that the loads imposed on the drive shaft and its supporting bearings by fan unbalance

are negligible. A rotating centrifugal load of 100 pounds, due to unbalance, would be extremely objectionable and possibly even damage the structure on which the drive was mounted. By contrast, it would be unlikely that the drive shaft of a fan, of perhaps 25 HP, would be supported on bearings rated less than 2000 or 3000 pounds radial load. For higher horsepowers, the bearing capacity would be correspondingly increased. From this it is evident that speed reducer or drive shaft bearing failure could never be caused by moderate or even objectionable fan unbalance.

3.3.3 BELT DRIVE UNITS

The more common causes of vibration in belt drive units are not the drives themselves but the result of shafts that are too flexible or non-rigid supporting members. Vibration can be caused by misalignment of the sheaves or poorly adjusted belt tension. Consult the manufacturer of the drives for information. The quickest way to identify the cause of vibration in belt drive units is to operate the fan with the blades removed.

3.3.4 ROUGH GEARS

Continued operation on rough gears and bearings is almost certain to develop cracks in the blade skins. Rough gears may be of two types:

1. Rough or failed bearings in the drives or gears will result in a high frequency vibration being transmitted into the fan where some areas of the skin will respond to the frequencies applied. Cracks will appear in the blade skin and eventually, in some areas, the skin may actually fall away.

2. The other type of rough gear occurs when the output shaft accelerates and decelerates with each pinion tooth engagement. With a six tooth pinion and a motor speed of 1800 RPM, or 30 cycles per second, this gear misalignment impresses upon the fan a vibrating frequency of $30 \times 6 = 180$ cycles per second. If the engagement of teeth is also included, the frequency is 360 cycles per second. This type of high frequency vibration is at least as serious as that caused by bad bearings.

TMC-704 Rev J- 7/08

MOORE FANS LLC, Marceline, MO 64658 Phone (660) 376-3575 FAX (660) 376-2909

Page 9

3.3.5 THROAT FLUTTER

Any fan that is effectively moving air at the tips of the blades will develop a reduced pressure area (or suction) on the fan throat or ring at the tip of the blade. This suction tends to draw the throat toward the tip of each blade, which means that a four blade fan would tend to draw the throat into something approaching a square while a six blade fan would draw it into something resembling a hexagon, etc. Since the fan is rotating, the effect on the throat is that of continually drawing it into a rotating polygon. The resulting throat flutter is frequently mistaken for fan unbalance.

A substantial throat or ring will be sufficiently rigid that flutter will not exist. A weak or flexible throat, particularly when used with a fan of a low number of blades, will be greatly affected by this type of vibration. Throat flutter is easily detected due to the fact that it is invariably of a frequency of the fan RPM times the number of blades on the fan.

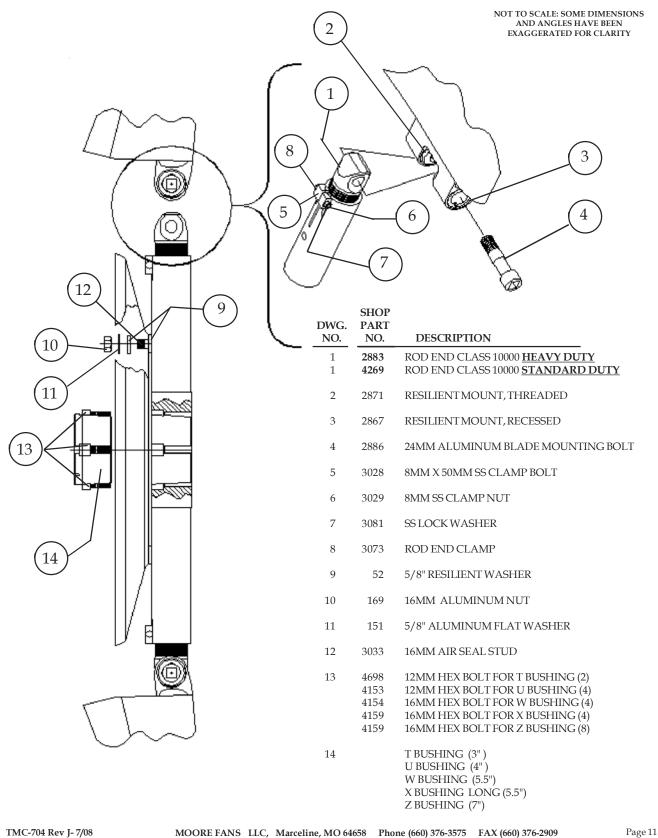
Throat flutter will cause no damage to the fan so long as the throat does not disintegrate and fall into the fan blades. It may be eliminated by stiffening or bracing the throat.

If in doubt that throat flutter is the cause of

vibration, reduce the angle of the blades until the fan is doing little or no work. If the vibration ceases under this condition, it is certain that throat flutter is present when the blades are loaded.

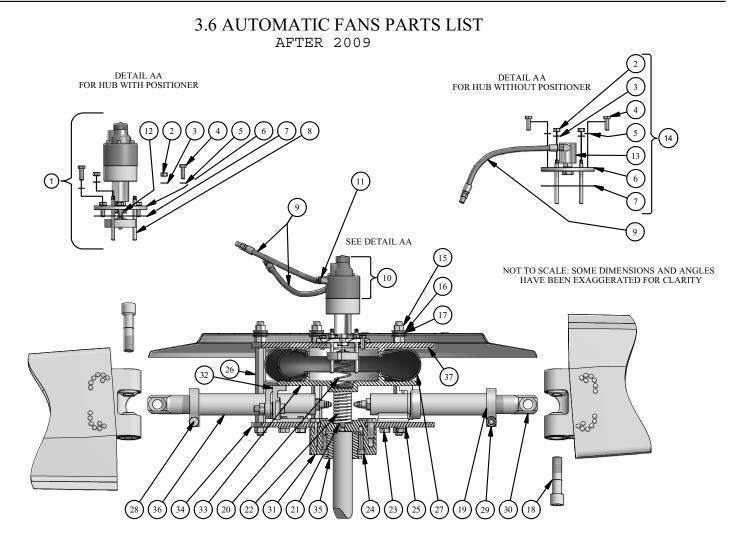
3.3.6 FIELD BALANCING

Unbalance in older fans may develop because of some structural change or by installing one new blade on an old fan where the existing blades had changed in weight in the course of operation.


Use wire to attach a small weight in succession to each of the air seal studs until the best location for the weight is found. The weight should then be increased or decreased until the best balance is achieved. The permanent weight may then be secured to the stud or hub tube, whichever is the most convenient for the type and shape of weight to be used. One or more pieces of metal shaped like a washer could be placed over the stud, on the hub tube, behind the stud, or over the threaded portion of the rod end. Aluminum or stainless weights should be used and weights should not be attached to the blade skin.

3.4 WARRANTY

MOORE FANS LLC (the Seller) warrants only to Buyer, as its purchaser for resale, that the fans manufactured and sold by Seller to Buyer under this Agreement will be free from all defects in material and workmanship under ordinary use for a period of two (2) years from the date of shipment or one (1) year from the date the fan is installed on a customer's premises, whichever occurs first. This warranty period shall apply only if Seller receives written notice of any defect within the warranty period. Upon receipt of such notice, Seller, at its option, may require Buyer to return the fan at Buyer's cost to Seller for inspection by Seller. If the fan is found to be defective on inspection by Seller, as a sole and exclusive remedy, Seller will, at its option, either repair or replace the fan. This warranty shall not


apply to damage on account of misuse, neglect or accident or shipping damage, or if repairs or part replacements have been made or attempted without Seller's prior written authorization. Seller shall NOT be liable in ANY EVENT FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR BREACH OF THIS OR ANY WARRANTY. THIS WARRANTY IS IN LIEU OF ALL OTHER GUARANTEES OR EXPRESSED WARRANTIES AND ALL IMPLIED WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE. DUE TO THE VARIETY OF CONDITIONS UNDER WHICH THE FANS MAY BE USED, RISKS OF RESULTS OBTAINED FROM USE OF THE FANS, WHETHER USED ALONE OR IN COMBINATION WITH OTHER PRODUCTS, IS ENTIRELY BUYER'S. THE ABOVE LIMITATIONS ON DAMAGE AND EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES ARE NOT APPLI-CABLE TO THE EXTENT PROHIBITED BY STATE LAW.

3.5 MANUAL FAN PARTS LIST

TMC-704 Rev J- 7/08

MOORE FANS LLC, Marceline, MO 64658 Phone (660) 376-3575 FAX (660) 376-2909

ITEM	PART #	DESCRIPTION	ITEM	PART #	DESCRIPTION
1	2624	CSP UNION ASSEMBLY (WITH POSITIONER)	22		RETURN SPRING
2	1625	10mm STAINLESS STEEL NUT (3)	23	4515	16mm x 32mm ALUMINUM ANCHOR TEE BOLT (4 per BLADE)
3	733	3/8" SEALED WASHER (3)	24		12mm HEX BOLT FOR T BUSHING (2)
4	771	10mm x 30mm STAINLESS STEEL BOLT (6)	İ		12mm HEX BOLT FOR U BUSHING (4)
5	179	3/8" FIBER WASHER (6)	Ì		16mm HEX BOLT FOR W BUSHING (4)
6	162	UNION PLATE			16mm HEX BOLT FOR X BUSHING (4)
7	163	UNION PLATE GASKET	25	152	5/8" ALUMINUM LOCK WASHER (4 per BLADE)
8	159	STAINLESS STEEL STOP STUD (3)	26	1530	18mm x 302mm ALUMINUM HUB STUD
9	257	12" STANDARD NEOPRENE AIR HOSE ASSEMBLY WITH 1/4" NPT	27	16	DIAPHRAGM ACTUATOR
9	231	EXTERNAL THREADS BOTH ENDS	28	167	16mm x 70mm ALUMINUM BOLT
10	21	POSITIONER	29	169	16mm ALUMINUM NUT
11	210	1/4" BRASS STREET ELL	30	4269	ROD END
12	344	5/8-18 LH LOCKNUT	31		AUTOMATIC FAN BUSHING ADAPTER
13	264	CS ROTARY UNION	32		PISTON STRUT ASSEMBLY WITH HARDWARE
14	186	CS UNION ASSEMBLY WITH HARDWARE	33		PISTON PLATE
15	1532	18mm ALUMINUM NUT	34		AUTOMATIC HUB PLATE
16	164	3/4" ALUMINUM FLAT WASHER	35		T BUSHING (3")
17	52	5/8" RESILIENT WASHER			U BUSHING (4")
18	2886	24MM ALUMINUM BLADE MOUNTING BOLT			W BUSHING (5.5")
19	644	SMALL CLEVIS CLAMP			X BUSHING LONG (5.5")
20		RANGE SPRING	36		HUB TUBE ASSEMBLY WITH HARDWARE
21		RETURN SPRING SHIM	37		CYLINDER PLATE
			1		

Project Job No : S16286-IOM PAGE 12 MOOR

4.0 OPERATION 4.1 AERODYNAMIC ABUSE

4.1.1 ABOUT THIS SECTION

It is widely acknowledged that the kinds of mechanical abuse described on the preceding pages are destructive for all types of operating equipment. It is less well recognized that — for fans — aerodynamic stresses are an even more serious hazard. This section deals with the causes of destructive aerodynamic stresses and how they can be avoided.

Although this information is given primarily for the benefit of operators of Moore equipment, it may be applied to fans of any manufacture.

Unlike smaller fans, which are typically furnished complete with their surroundings, the large fan wheel is supplied as an unprotected component of the system and is installed in innumerable types of surroundings. Not only do the types and conditions of the drives for these fan wheels vary widely, but the entrance and exit conditions and the enclosure for the wheel assume a myriad of possible combinations. In designing his product, the manufacturer of fan wheels must anticipate the operating conditions based upon his knowledge of what is reasonable and customary for the industry. He may over-design for abnormal stresses only until the practical limit is reached to avoid excessive weight, cost and inefficiency.

4.1.2 NORMAL OPERATING CONDITIONS

The fan manufacturer assumes a fairly reasonable atmosphere for the operation of his product, including the following:

- The fan selection will be reasonably in line with the performance the unit is expected to maintain, with an adequate blade area for the pressure required at the given RPM. Blades will not be loaded beyond their capacity to maintain air flow.
- A fan ring will be provided that is round, rigid and of a depth at least sufficient to cover the tips of the blades. Tip clearances will be uniform and controlled.
- The approach air will represent a relatively uniform and axial flow with, of course, some unavoidable turbulence expected. Adequate open area will be provided at the inlet of the fan.
- Major obstructions will not be present at either the inlet or discharge of the fan.
- The RPM of the fan will be within the design limits.
- The relative direction and velocity of approaching air to the blades will be fairly constant and protection will be provided from extreme wind conditions.

Under such conditions, the unit stresses in the blades would not be expected to vary more than plus or minus 50%. Fan design based on such assumptions is entirely reasonable and, with proper drives and installation conditions, has proven highly successful.

4.1.3 ABNORMAL CONDITIONS

Abnormal operating conditions result in destructive repetitive stresses that can seriously shorten fan life. The aerodynamic abuses discussed in this section can cause repeated flexing of the fan blades and hub. Violent displacement of the resiliently mounted Moore fan blades may occur – a greater displacement than would occur in rigidly mounted blades. The resilient mounting, of course, minimizes the structural unit stresses which would be transmitted to the root of the blade and into the hub and drive. Although Moore units may be expected to resist greater stress than units of conventional design, such repetitive stresses may exceed the capability of the resilient mounts to absorb them. If so, fatigue of the mounts and metal may develop, adjusting linkages may wear, and ultimate failure becomes a possibility.

Some of the abuses set out in the following text are far less important than others. All of them may occur in varying degrees.

Specifically, abuse due to serious repetitive stresses can lead to mount failure and, if carried to extremes, can require blade replacement. In units of other manufacture with rigidly mounted blades, repetitive stresses of this type may lead to blade breakage, probably near the root or at the point of attachment to the hub where stresses are highest, or may lead to failure of the hub itself. The resilient mount design, unique with Moore fans, dampens these vibrational forces and results in a fan that is far less vulnerable to failure from these conditions than other units with rigidly mounted blades. Even so, extreme conditions can cause damage.

A well-designed fan can be expected to operate for many years without trouble under normal operation as described above. The extreme repetitive stresses described below, however, will certainly reduce the life of the fan, causing failure many years sooner than would occur if the fan were operated as intended. Fortunately, these destructive conditions are readily observable to someone who is knowledgeable about them, and they can be corrected with reasonable effort and expense once they are observed.

4.2 BLADE OVERLOAD

Of all the aerodynamic abuses to be avoided in the operation of a fan, the most important is that of overloading the fan blades. Blade overload occurs because of insufficient blade area: In other words, when there is an inadequacy in the number of blades on the fan selected.

The Moore system of rating is based upon the pressure that each blade will produce at a given RPM with good efficiency. This pressure is called 100% blade load. When blade load exceeds 110%, the fan will not only operate at lower efficiency, it may be subject to structural damage as well.

In selecting a fan, the total pressure divided by the pressure to be produced by one blade determines the number of blades required for the anticipated performance. Whenever information is available, The Moore Company checks the selection. Even so, underestimation of the pressure requirements by the system designer, or changes in the operating conditions over time, may result in overload conditions.

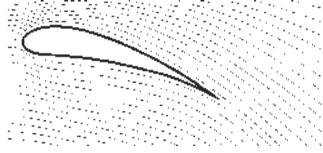
Why is a blade overload condition of such concern? We are all aware of the fact that an airplane traveling at a given speed can carry only a certain load. If the speed of the airplane is decreased or the load increased, stalling flow over the wing will occur. In the case of an airplane, approximately two-thirds of the lift provided by the wing is the result of the air flow over the top or convex portion of the wing. Lift is provided as a reaction to the flow of air being accelerated and deflected downward as it passes over the wing. A negative pressure area is thus formed on the top surface of the wing which tends to lift it upward.

So long as air flow over the wing is smooth and clings to the surface of the wing, little turbulence is present. When the load is increased, or the speed decreased, the angle of the wing to the air stream must be increased to a point where the air flow breaks away from the upper surface of the wing. This is known as stalling or burbling flow, since the air, instead of clinging to the wing, breaks away near the leading edge and leaves what might be called a turbulent void above the upper wing surface, nullifying the accelerated flow which was responsible for the greater part of the lift of the wing.

When this occurs, the wing loses a large portion of its lift. Flow, however, will re-establish briefly and break again, the cycle being repeated continuously, resulting in a severe

AIRFLOW IN NORMAL FLOW

Downward flow provides lift to the wing


vibration throughout the aircraft as the flow alternately makes and breaks. Anyone who has experienced a stall in an airplane will be familiar with this violent phenomenon.

A fan blade is no different than an airplane wing except that the air usually is being deflected upward rather than downward, the convex side of the blade being the lower surface rather than the upper surface as in the case of an airplane. The result of blade overload is identical: When blade load exceeds that allowable, a violent vibration will take place in the blade as the laminar, or uniform, flow makes and breaks perhaps many times a second.

Another way of looking at this problem is to consider that the available number of blades are set at too steep an angle to be able to move air at the axial velocity which is necessary to maintain a smooth flow over the convex surface. In other words, to move air at the velocity necessary for this blade angle, plus overcoming the static resistance of the system, the total pressure which would have to be maintained for an air flow corresponding to this angle is greater than the total pressure capability of the given number of blades at this RPM. Such a condition can only be corrected by decreasing the blade angle until smooth flow is obtained or by increasing the number of blades and the total pressure potential of the fan until the fan's pressure potential equals the pressure necessary to move the specified quantity of air through the system.

Continued operation under conditions of stalling flow, or blade overload, will significantly shorten the life of the fan. Operation under these conditions will also reduce efficiency to a ridiculously low figure. See the chart under Section 4.4 Checking Blade Load which follows. Note that although air flow remains constant or decreases, horsepower continues to increase with increased blade angle.

In conclusion, if a given fan, in a given installation, can only absorb forty horsepower, for example, the blades may be pitched up to consume fifty horsepower without any increase in air delivery, and possibly with a decrease. As a result, the extra ten horsepower is totally wasted -- perhaps worse than wasted. It is good practice to select a sufficient number of blades so that blade load will amount to slightly less than 100% of full blade load

AIRFLOW IN STALLING FLOW Note lack of air deflection downward.

Page 14

4.3 CAUSES OF IMPROPER BLADE LOADING

4.3.1 VARIATION FROM PREDICTED CONDITIONS

Although those who design air coolers and cooling towers undoubtedly do their best to accurately state the calculated static resistance of the system, a number of factors may cause the actual conditions to vary from the design conditions. When a variation occurs, it may be found, upon testing, that the static pressure for a given volume through the system is higher than anticipated. In this case, the number of blades provided may be inadequate to meet the performance. On the other hand, the static pressure may have been overestimated and excess blade area provided, resulting in a fan with unutilized capacity operating at low efficiency.

Inadequate Blade Area: The blade angle is selected to move the anticipated volume of air and the number of blades is selected to maintain the total anticipated pressure required to move this volume at a given RPM. If the static pressure turns out do be higher than predicted, the fan may then be operating in an overload condition. If the RPM cannot be increased, the only solution to this condition is to reduce the blade angle until the fan can carry the then reduced volume at the originally anticipated pressure. Since reducing the volume, while holding the total pressure as originally anticipated, can only reduce the horsepower, it is then impossible to consume the horsepower originally intended without overloading the fan. This is one of a number of reasons for providing some safety factor in blade loading at the time of original fan selection.

Excessive Blade Area: Occasionally, an excessive number of blades may be specified in the interest of making a conservative selection. If the static pressure has been overstated, the theoretical number of blades will be greater than needed. This theoretical number of blades is usually a fractional number and the actual number of blades used must, of course, be the next larger integer, resulting in some "safety factor" in the selection. If, in addition, a blade or two is added as a "safety factor" or in anticipation of increased future requirements, it may be impossible to meet the original performance requirement efficiently. The only way to provide the original performance and draw no more than the original horsepower is to flatten the blade angle. There is a limit, however, in how far the blade angle may be reduced before further reduction will decrease airflow without a further reduction in horsepower. For belt drive units, the most practical solution to this problem is to reduce the RPM of the fan.

4.3.2 EXCESSIVE TIP CLEARANCE

Unless the fan ring is very close to the tip of the blade, air from the high pressure surface of the

blade will flow around the tip and nullify the negative pressure on the underside of the blade for some distance in from the tip. For a fan of, say, 12-ft diameter, the last 12 to 18 inches of the blade could be producing no pressure whatever and performing no useful function. The balance of the fan blade toward the hub then must produce a higher pressure to compensate for the portion near the tip.

Excessive tip clearance also leaves an unswept area between the tip of the blade and the fan ring. Air that has been pumped by the fan will return downward through this unswept area at a velocity greater than that at which it passed through the fan in the desired direction. This condition adds even further to the requirements of the portion of the blade which is doing the work and efficiency will be greatly reduced.

With the loss of a foot at the tips of the blades, plus the back flow between the tips and the ring, the 12-ft fan in this example might be considered an effective 10-ft fan. It would have to deliver sufficient air to satisfy the performance requirements of the installation, plus the amount of air which is returning in the void between the tips and the throat. Under such circumstances, excessive blade loading could occur even though the required system pressure is not achieved.

4.3.3 POOR ENTRANCE CONDITIONS

Air will approach the fan from all possible directions, increasing in velocity as it nears the opening, then accelerating rapidly as it enters. The air approaching from the side must be turned through 90° to enter a ring whose entrance terminates in a flat plate. If the inlet end of the ring projects some distance out, with approach possible from all directions, a portion of the air must be turned through 180°. The inertia of the approaching air prevents it from turning sharply and advancing parallel to the desired flow. It consequently swoops toward the center, leaving the outer area of the fan with reduced flow or even reverse flow near the ring.

The effect of poor entrance conditions is similar to that previously described for excessive tip clearance in that the effective diameter has been reduced and excessive blade loading could occur even though the required system pressure is not achieved. Efficiency will be greatly reduced.

4.3.4 EXCESSIVE DEFLECTION

The pressure which the fan can achieve is dependent upon the square of the velocity of the blades relative to the air. If the air could be moved into the fan in an axial direction and passed through the fan into the discharge without changing direction, the relative velocity of the blades to the air stream would be the true velocity of the blades at any point. This, of course, is not the case. For the blades to accomplish work upon the air, they must also deflect the air in the direction of rotation of the fan. The air when rotated with the fan is moving with a certain velocity in the same direction as the rotation of the fan, which reduces the relative velocity between the fan blades and the air by some portion of this rotational velocity.

Moore fans are designed in contemplation of a maximum deflection of 50° at the hub, decreasing to a very small value at the tip. This deflection is considered in the determination of the pressure which may be provided by each blade over its full length. If fans are selected, or if conditions exist, which cause the deflection to exceed 50° at the hub, the velocity of the blades relative to the air is less than anticipated and the blades will not provide the rated pressure. The test below, however, will show the full allowable pressure capability of the fan, even though it does not reach the full rated pressure.

4.3.5 CONCLUSION

As can be seen by the various points discussed in this section, there are a number of complex factors which tend to cause fans to be operated in a condition of improper blade loading which can shorten fan life or lower efficiency. When blade angles are set to consume the specified horsepower (at the fan shaft), the resulting performance should be very close to the specified performance. If this is not the case and the problem cannot be identified or corrected, please contact Moore for assistance.

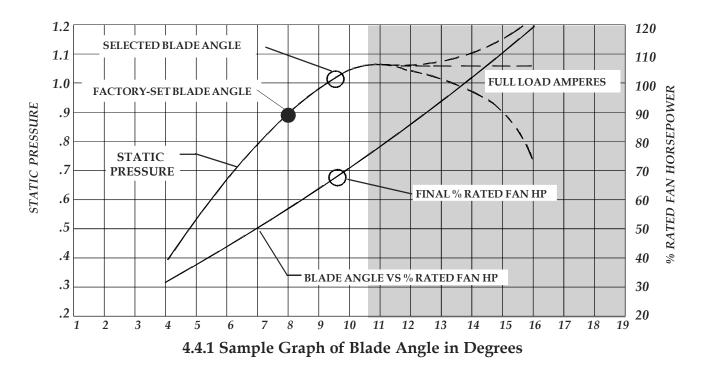
4.4 CHECKING BLADE LOAD

One method of checking blade load is to run a complete field test on the fan. Although laborious, this method will provide ample proof so long as neither excessive tip clearance nor poor entrance conditions are present. If either are present, however, the conditions set out above under Section 4.3.3 would apply and the fan could be overloaded even though the total pressure indicated by the test was within the allowable blade loading.

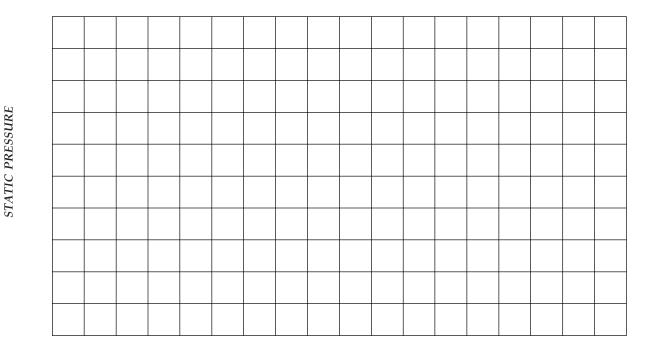
A better, more convenient and simpler method of detecting blade overload, or determining maximum allowable blade angle, is set out below. The equipment needed is a wrench, a torque wrench, a protractor and a draft gauge (or manometer).

All fans are shipped with the blade angle set for the anticipated performance requirements furnished to The Moore Company by the purchaser. This blade angle is called out on the Fan Specification Sheet. This angle refers to the angle measured at the location shown in Section 2.3.3. Hubs are shipped with the clevises set at this angle.

To start the test, adjust the blades to an angle of approximately half that called out on the specifications or measured on the units. Connect the draft gauge to as quiescent a spot in the plenum as possible, preferably in the corner of the plenum and either ahead of or following the fan, depending upon whether the application is induced or forced draft. Since the figures obtained are purely relative, it is not necessary that accurate static pressure readings be obtained, but rather that the readings taken represent a consistent series of pressures at the point of reading chosen.


Start the fan and record on the chart provided the blade angle and he static pressure indicated. Advance the blade angle by one or two degrees and repeat the performance, recording again these readings. Keep increasing the angle and following this procedure until the motor is fully loaded, in which case the fan is able to consume full rated fan horsepower without overload OR until the curve which will have started on a definite slope begins to approach the horizontal. It will be noted that the static pressure will be consistently increasing with increased blade angle until the blade loading reaches maximum, at which point it will level off.

Subsequent increases in blade angle may have quite different effects, depending on the individual installation. The static pressure curve may merely stay level or may drop off sharply. In rare cases, it may level off and again start rising as the fan begins operating as a centrifugal blower.


Typical examples are shown in dotted lines on the chart opposite. Operation beyond the first point of levelling, or in the area of the dotted lines, is indicative of blade overload. Note that power consumption load will continue to increase even though the fan has passed into overload condition. The maximum blade angle allowable is that which produces a static pressure about 5% below the point where the curve becomes level. This represents a safe loading, and the blades may be set and left at this angle regardless of the location on the chart, assuming the motor is not overloaded.

The point so selected will also approximate the point of the most efficient operation of the fan. Due to possible error in static pressure predictions, or in readings which are intended only to be relative, as well as other variables, the final blade setting chosen may fall below or above the specified static pressure.

A typical performance chart is shown opposite for a fan capable of a higher blade loading than origianally specified. A blank chart is also provided for your use.

Note in the chart above that static pressure (and air flow) has reached its maximum at an 11 degree blade setting and blade overload is beginning. With further increase in blade angle, anything may happen, as indicated by the dotted extensions into the shaded overload area. Note that the final selected blade angle is 5% below the point where the static pressure curve becomes level. The horsepower curve has been added to illustrate the point that in an overload condition, horsepower will increase without increased performance.

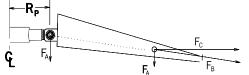
BLADE ANGLE IN DEGREES

BLANK CHART FOR CUSTOMER USE

4.5 DAMAGING OPERATING CONDITIONS

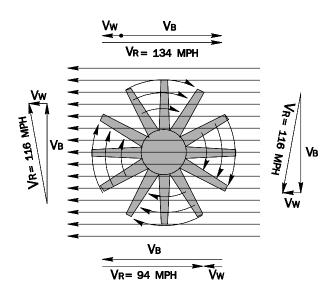
4.5.1 GENERAL

Any condition which causes repeated blade loading and unloading is detrimental to fan performance, both in terms of efficiency and structural durability. Normal obstructions, of course, must be expected in the air stream. There are certain conditions, however, which may be avoided by reasonable attention to the points briefly discussed in this section. Additional information on the importance of inlet and discharge conditions can be found in Moore's General Catalog.

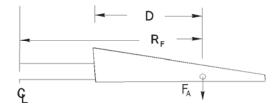

Ideally, air should approach a fan in an axial direction and at a uniform velocity over the area of the fan. Air approaching a fan at an angle tends to increase the relative velocity of the blades to the air on one side of the fan and decrease the relative velocity on the other side. This means that the fan blade during one-half of its revolution is picking up a heavier air load due to the higher relative velocity and, through the other half of its revolution, a lower air load as it goes "down wind". The net result is a repetitive loading and unloading of the blades at each revolution of the fan. This condition can be quite serious if the velocities are high and the angle of approach deviates considerably from axial.

4.5.2 WIND

With a vertically mounted fan blowing outward into the wind and surrounded by a short fan ring or stack, high winds may cause some concern. The farther the ring extends beyond the fan, the less effect would be expected from wind. It is a fact, however, that wind across the face of the ring will affect the direction of air flow well down into the ring. In the case of a fan installed near the outlet of the ring, the direction from axial of the fan discharge may be increased by as much as 45° under high wind conditions.


THE EFFECT OF AIR LOAD ON HUB AND DRIVE

Moore fan blades are attached to the hub by a pivot. As the fan rotates, centrifugal force causes the blades to rise (as do the blades of a helicopter). The air load (FA) is uniform over the blade, but there is a point (shown on the blade in the drawing below) where, if the total load were applied at that point, the effect would be the same. The resultant of the air load (FA), assumed in this example to be downward, and the horizontal centrifugal force (Fc) is the force on the blade (FB). The blade automatically posi-


tions itself in the direction of this force with the result that the force is translated inward to the pivot point, as illustrated by the dotted line. The effect of this arrangement is exactly as if the total air load (FA) were applied at the pivot point rather than at the point outward on the blade. The maximum bending moment applied to the shaft by the air load is equal to the load (FA) multiplied by the distance from the fan centerline to the pivot point (RP). In the case of a fan blowing inward in a short ring, the condition is even more critical. In such an installation, the air on the inlet side of the fan has a horizontal velocity which may be quite high. It is necessary for the fan to pick up this air and direct it inward. In a strong wind, the angle of air moving through the fan may be increased more than 45° .

The illustration above assumes a fan operating with a tip speed (V_B) of 10,000 feet per minute (114 miles per

hour) with a horizontal component of wind velocity (Vw) of 20 miles per hour. Note that the velocity (VR) of the fan blade relative to the air varies by a factor of 1.43. The blade load varies as the square of this velocity, or 2.05.

In conventional fans with rigidly attached blades, the bending moment at the shaft due to the air load is equal to the load (FA) multiplied by the distance from the fan centerline to the point of application of the force on the blade (RF). This moment will be from 2 to 4 times as great as that produced by the Moore fan under the same condi-

tions.

Also of concern with the conventional fan is the bending moment due to the air load at the point of attachment of the blades to the hub since this is usually the structurally weakest area of the fan. The moment due to the air load at this point is the load (F_A) times the distance (D). For the Moore fan, this moment is zero since the blades are attached at the pivot point.

A more complete discussion of the Moore fan design can be found in The Moore Company's General Catalog.

Page 18

MOORE FANS LLC, Marceline, MO 64658 Phone (660) 376-3575 FAX (660) 376-2909

In this rather common wind condition, then, it can be seen that the blade load on the side where the blade is going against the wind will be double the load on the side where the blade is going with the wind. In a 40 mile per hour wind, the blade load would vary by a factor greater than 4. In a 60 mile per hour wind, the load would vary by a factor of more than 10! It is obvious that operation under such conditions will impose tremendous repetitive loadings on the fan blades.

In areas of unusually high wind velocities, it may be advisable to shield the fan in some manner.

4.5.3 OBSTRUCTIONS

Obstructions of one type or another in the air stream, ahead of or beind the fan, are to be expected. In fact, it would be virtually impossible to eliminate all obstructions. Structural supporting members, foundations and the like, need not be of serious concern although all obstructions, even small ones, will increase the static pressure and must be taken into consideration by the system designer in specifying the fan performance.

The total free area from which the fan can draw air should be twice the net area of the fan (fan area minus hub area). In other words, the air approaching the inlet of the fan should have no more than half the velocity of the air passing through the fan. This area should be distributed reasonably uniformly. It would be unwise to attempt to operate a fan with one-half or one-third of the fan area completely blanked off. Such a condition would cause stalling of the fan blade through one-half the revolution but create a condition of overload in the half which was not blocked off. Excessive vibration would result. Any condition which forces the air to approach the fan in a non-axial direction should be avoided.

4.5.4 UNEVEN TIP CLEARANCE

Where fan rings are out of round or not centered with the fan, the tip clearance of each blade will vary as it makes a revolution. If tip clearance is tight at one point and excessive at another, proper flow will establish itself at the tight point, loading the blade to the very tip, while at the loose point the air will flow from the high pressure side of the blade through the opening between the blade tip and the ring and nullify the negative pressure on the under side of the blade. This will unload the blade near the tip within the area of excessive tip clearance. Under this condition, the blade will load and unload near the tip one or more times per revolution, resulting in an undesirable repetitive vibration. Every effort should be made to keep the tip clearance to a minimum and to have this clearance as constant as possible around the entire ring.



Industrial Belt Design - Drive Detail Report Unlaub® Problem Solver using Gates DF-Pro

Designed For:			,	Lynn Kleine The Unlaub Company 1722 East King Place Tulsa, Oklahoma 74110 United States Ikleine@unlaub.com 918-895-8813 Phone 918-585-8219 Fax	
Application:	SMIT 16B286			510-505-02151 dx	
INPUT Known Belt: Speed Ratio:	5VX1320 - 2		Known Size: RPM:		DriveN 37.5 in Outside 98.9
•	5 hp, Efficiency: 87.0	0 %	Shaft Diameter:	1.625 in	2.9375 in
Design Power: Center Distance:	7 hp	NFMA 254T frame	Bushings Checked: Belts Checked:	QD, No MPB	2.3373 11
					Single Belts
SELECTED DRIVE Belt Type:	Super HC - 5VX	Fotal # of Strands/Ribs:	Belt 2	DriveR	DriveN
dN RPM:	8.70 Down 98.9	Part No: Product No:	2-5VX1320 9414-1320	QD2/5V4.40 7874-2044	QD3/5V37.50 7874-3375
	1.17	Top Width: Weight:	 2.4 lb	1.69 in 3.3 lb	2.38 in 144 lb
Belt Pull: Center Distance:		Rim/Belt Speed: RPM:	968 ft/min 88.0	991 ft/min 860.0	971 ft/min 98.9
Install/Take-Up Range:	27.05 in to 30.25 in	Bushing Part No: Bushing Product No: Bore: Bolt Torque		SH 1 5/8 7838-1110 1.625 in 108 lb-in	F 2 15/16 7839-2215 2.9375 in 1320 lb-in
		Pitch Diameter:		4.30 in	37.40 in
Belt 507C/508C Model ST	rib/strand): 122 (total pull): 394 n Distance: ction Force: 8.5 sision Meter: 543 Frequency: 54 M Settings: Mass 14	to 131 lbf 105 tr to 423 lbf 338 tr 0.35 in 0. to 9.0 lbf 7.4 tr to 582 N 466 tr to 56 Hz 50 tr 0.38g/m,Width: 1 mm/#F	ed Belt o 113 lbf o 366 lbf 35 in o 7.9 lbf o 504 N o 52 Hz R, Span: 575 mm to 1.0038		
 User requested non-l The DriveR pulley bu The DriveN pulley/bu This report: (1) only sale or maintenance products are not de systems, and all ma 	lected by Design Flex PowerBand belts. shing requires a shall shing weight exceeds applies to Gates' pro- e of our products; and signed, manufactured anned or unmanned ai	; the belt width/length was bw keyseat. 50 lb. Exercise care durin ducts; (2) contains confide (4) is not a guarantee of or tested for use on airco rborne applications of any tion and testing of produc	ng installation.~ ential information; (3) performance. raft applications, inclu y type. Lift and Braki	may only be disclosed to uding aircraft propeller or ng systems have special	rotor drive
4/18/2016 11:25 AM Centra Project Job No : S		Page 1	of 1	3.34/3.30/2.44/	North America Englis

Shock and Vibration Switch – VS2 Series

Features

- Designed to Detect Shock/Vibration in 3-Planes of Motion
- · Fully Adjustable
- Includes Magnetic Latching Feature
- Manual or Electric Reset

* Selected Configurations are Third Party Listed

The VS2 Series switches are shock sensitive mechanisms for shutdown of engine or electric motor powered equipment. These switches use a magnetic latch to ensure reliable operation. Explosion-proof "EX" models for hazardous locations are available.

Applications

Ideal for use on engines, pumps, compressors, heat exchangers and pumping units, the VS2 Series can be used anywhere shutdown protection from damaging shock/vibration is desired. Switches are field adjustable to sensitivity required in each application.

Specifications

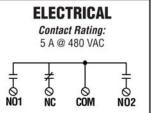
VS2 and VS2C	Shipping Weight: 4 lb 8 oz. (2 kg)
Case: Environmental Protection: Ingress protected to IP54 (when	Shipping Dimensions: 8-1/4 x 9-1/4 x 5 in. (210 x 235 x 127 mm)
mounted on a horizontal surface with drain holes down).	VS2EXR
Suitable for non-hazardous areas	Case: Same as VS2EX
VS2C: C-clamp mount, includes 45 ft. (13.7 m) 2-conductor	Certification: CSA, UL
cable, and 5 cable clamps Contacts: SPDT-double make leaf contacts, 3A @ 240 VAC; 10A @120 VAC; 10A @ 32 VDC	Snap-switch: 1-SPDT snap-switch and reset coil; 5A @ 480 VAC; 2A resistive, 1A inductive, up to 30 VDC
Shipping Weight:	Remote Reset: 115 VAC or 24 VDC (specify)
VS2: 2 lb 8 oz. (1.1 kg)	Shipping Weight: 5 lb 8 oz. (2.2 kg)
VS2C: 7 lb (3.2 kg)	Shipping Dimensions: 8-1/4 x 9-1/4 x 5 in. (210 x 235 x 127 mm)
Shipping Dimensions:	VS2EXRB
VS2: 8-1/4 x 9-1/4 x 5 in. (210 x 235 x 127 mm)	Case: Explosion-proof aluminum alloy housing; rated Class I,
VS2C: 12 x 7 x 5-1/2 in. (305 x 178 x 140 mm) ́	Division 1, Group B hazardous areas
VS2EX	Certification: No third party certification
Case: Base mount, explosion-proof aluminum alloy housing; meets IP54 specifications; Class I, Division 1, Groups C & D; UL and CSA listed	Snap-switch: 1-SPDT snap-switch with reset coil (option available for 2-SPDT switches); 5A @ 480 VAC; 2A resistive, 1A inductive, up to 30 VDC
Certification: CSA, UL	Remote Reset: 115 VAC or 24 VDC (specify)
Snap-switches: 2-SPDT snap-switches; 5A @ 480 VAC; 2A	Shipping Weight: 17 lb 8 oz. (7.9 kg)
resistive, 1A inductive, up to 30 VDC	Shipping Dimensions: 12 x 12 x 10 in. (305 x 305 x 254 mm)
Normal Operating Temperature: -40°F to 185°F (-40°C to 85°C)	

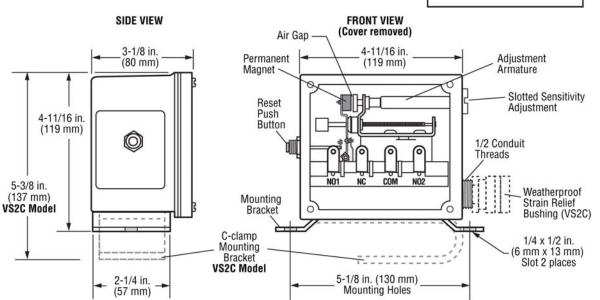
Basic Operation

Pushing the reset button moves the tripping latch into a magnetically held position. A shock/vibration will move the magnet beyond this holding position, thus freeing the spring loaded tripping latch to transfer the contacts and shutdown the machinery (see dimensional diagrams in the following pages for visual representation of parts).

Remote Reset Option (VS2EXR and VS2EXRB)

The remote reset option includes a built-in electric solenoid which allows reset of tripped unit from a remote location. Available for 115 VAC or 24 VDC.

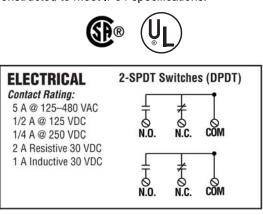

In order to consistently bring you the highest quality, full-featured products, we reserve the right to change our specifications and designs at any time. MURPHY products and the Murph logo are registered and/or common law trademarks of Enovation Controls, LLC. This document, including textual matter and illustrations, is copyright protected by Enovation Controls, L with all rights reserved. (c) 2013 Enovation Controls, LLC. A copy of the warranty may be viewed or printed by going to http://fwmurphy.com/warranty. Project Job No : S16286-IOM 105 of 131

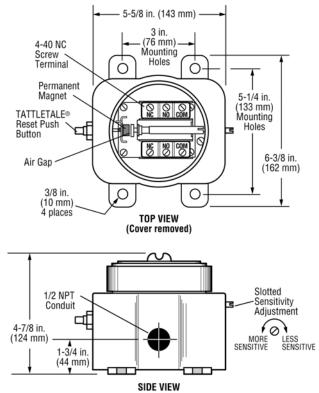

Dimensions

Environmental Protection: Ingress protected to IP54 (when mounted on a horizontal surface with drain holes down).

VS2 and VS2C

The VS2 and VS2C are designed for use in non-hazardous locations. They have leaf type SPDT, double make contacts that can be used for shutdown and/or alarm. They have a slotted sensitivity adjustment located on the side of the case (see drawing below).

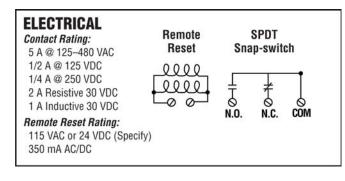


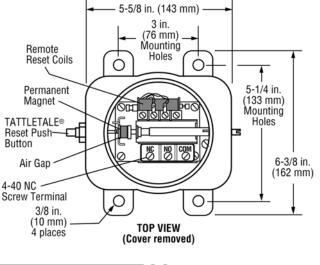


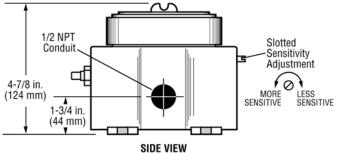
VS2EX

- IP54 Specifications
- Snap-switch Contacts
- TATTLETALE[®] Reset Button

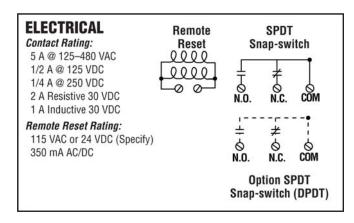
Model VS2EX is housed in an explosion-proof enclosure with threaded cover. This enclosure is CSA and UL listed for Class I, Division 1, Groups C & D hazardous locations. In place of the leaf type contacts, 2-SPDT snap-switches are used in this model. Sensitivity is externally adjustable and, when tripped, the VS2EX gives a TATTLTALE[®] indication on the reset button. It is constructed to meet IP54 specifications.

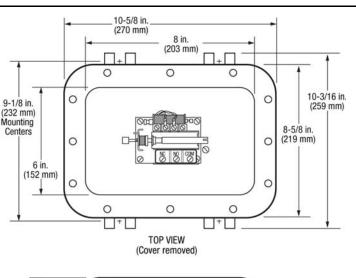


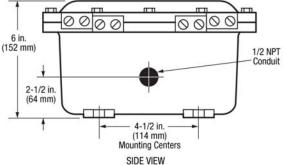

VS2EXR


- Remote Reset Feature
- IP54 Specifications
- Snap-switch Contacts
- TATTLETALE[®] Reset Button

Model VS2EXR features an electric remote reset feature in addition to the TATTLETALE[®] reset button. The VS2EXR uses only one SPDT snap-switch and is CSA and UL listed for Class I, Division 1, Groups C & D hazardous locations. It is constructed to meet IP54 specifications.

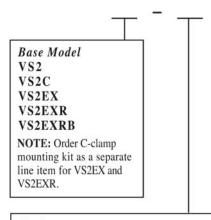





VS2EXRB

- For Group B Locations
- Snap-switch Contacts
- DPDT Feature Optional

Model VS2EXRB is constructed for use in Class I, Division 1, Group B, hazardous locations. It has, as standard, a SPDT snap-switch and an electric remote reset. Option is available for DPDT snap-switch


Service Parts

When ordering service parts, specify both part number and description in listing below. PART NO. DESCRIPTION VS2 and VS2C 20-00-0030 Movement assembly 20-00-0031 Glass and gasket assembly 20-00-0032 Reset push button assembly 20-05-0021 Mounting clamp (VS2C) 20-00-0261 Cable clamp assembly (1 each) (VS2C) 20-05-0465 2-Conductor electrical cable, 45 feet (13.7 meters) (VS2C) 20-00-0137 5 clamps and 45 feet (13.7 meters) of cable (VS2C) VS2EX 20-01-0091 Movement assembly 20-05-0087 Cover 00-00-0309 Cover gasket 20-01-0090 Snap-switch and insulator kit (1 switch per kit) prior to September 1, 1995. 20-00-0288 Snap-switch and insulator kit (1 switch per kit) for models manufactured on September 1, 1995 or later * 20-00-0289 C-clamp conversion mounting kit VS2EXR 20-00-0262 Movement assembly 20-05-0087 Cover 00-00-0309 Cover gasket 20-01-0090 Snap-switch and insulator kit (1 switch per kit) prior to September 1, 1995.* 20-00-0288 Snap-switch and insulator kit (1 switch per kit) for models manufactured on September 1, 1995 or later.* 20-00-0049 Reset solenoid assembly (115 VAC) 20-00-0234 Reset solenoid assembly (24 VDC) 20-00-0289 C-clamp conversion mounting kit VS2EXRB 20-01-0090 Snap-switch and insulator kit (1 switch per kit) prior to September 1, 1995.* 20-00-0288 Snap-switch and insulator kit (1 switch per kit) for models manufactured on September 1, 1995 or later.* 20-00-0057 Inside snap-switch and insulator kit (1 switch per kit) for model VS2EXRB-D prior to September 1, 1995,* 20-00-0058 Outside snap-switch and insulator kit (1 switch per kit) for model VS2EXRB-D prior to September 1, 1995.* 20-00-0287 Inside snap-switch and insulator kit (1 switch per kit) for model VS2EXRB-D manufactured on September 1, 1995 or later.* 20-00-0290 Outside snap-switch and insulator kit (1 switch per kit) for model VS2EXRB-D manufactured on September 1, 1995 or later.* 20-05-0077 Adjustment shaft 20-00-0262 Movement assembly 20-00-0049 Reset solenoid assembly (115 VAC) 20-00-0234 Reset solenoid assembly (24 VDC)

*Models with date 0895 and before use old switch. Dated 0995 after, use straight snap-switch arm, no rollers.

How to Order

To order your VS2 Series model use the diagram below. Part number example: **VS2EXR-24**

Options

24 = 24 VDC reset coil on VS2EXR or VS2EXRB
15 = 115 VAC reset coil on VS2EXR or VS2EXRB
D = DPDT switch on VS2EXRB only
LC = Less case
LCC = Less cable and clamps on VS2C

Duraflow Industrial Louvers Installation and Maintenance Instructions

PRE-INSTALLATION ACTIVITIES:

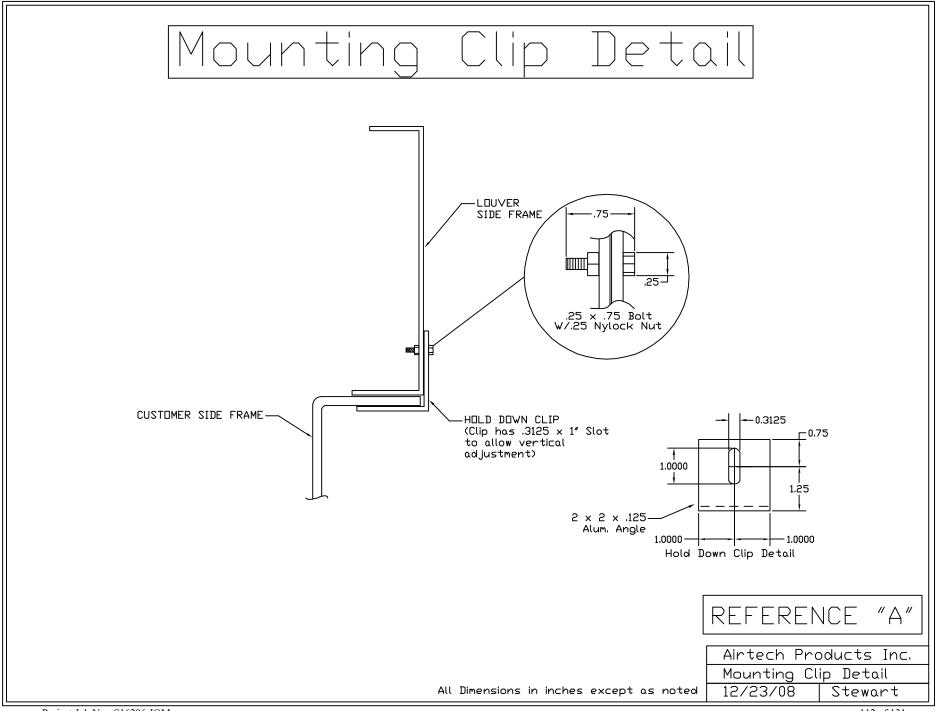
- 1. With the louver crate resting firmly on either saw horses or a smooth and level area at grade, remove packing crate top and sides.
- 2. Make a visual inspection of the louver frame, blades and all linkages/drive mechanisms to ensure there was no shipping damage.
- 3. Various small parts needed to connect the drive linkages are shipped in a separate and smaller cardboard box. Keep this box at hand but out of the way and in a safe place.
- 4. Inspect the mounting surface of the cooler giving particular attention to ensure it provides uniform support of the louver perimeter and that it is structurally adequate to support all static and dynamic loadings.
 - a. If the louver is to be mounted in a horizontal configuration, it is CRITICALLY IMPORTANT to ensure the mounting surface is uniform and level to +/- .25" over 20'. Airtech louvers are manufactured to precise tolerances and bolting to an off-level surface will cause binding in the moving parts. This will result in inconsistent operation, shorten product life and can cause permanent damage that voids the manufacturers' warranty.
 - b. If the louver is to be mounted in a vertical configuration, the installer must confirm there will be uniform support / attachment to the mounting surface at spacing not greater than 18" centers on the louver perimeter flange. Failure to do so may result in bending of the louver frame and inconsistent operation, a shortened product life and can cause damage that voids the manufacturers' warranty.
- 5. Take a moment to visualize the installation and plan the placement of individual louver subassemblies. Although all louver installations involve essentially the same procedure, any given application will have some unique characteristics. Some projects will require louver sections to link together at the side via torque tube connectors while others may link together at the ends via end links on the actuator rod. Small projects may require neither type of connection while large projects will require both.
- 6. Open the cardboard box of small parts and confirm all the necessary pieces are at hand. Depending on the application, this could be torque tube couplings, actuator rod end links, grade level operator components, clevises, etc. Please note, unless the louvers are to be attached via angle clips, the actual attachment hardware won't be included in the louver shipment.
- 7. Most of the time, louver installation is easiest done using self-drilling speed screws, 1/4" x 11/4" long, fine thread. Ensure a screw is in place on all corners and not greater than 18" centers on the louver perimeter. Simply drill through the louver flange into the host structure making sure the screw is completely pulled down tight. If retaining clips is your preferred method of attachment, please review to "Reference A" for instructions on use and installation.

MOUNTING & ATTACHMENT

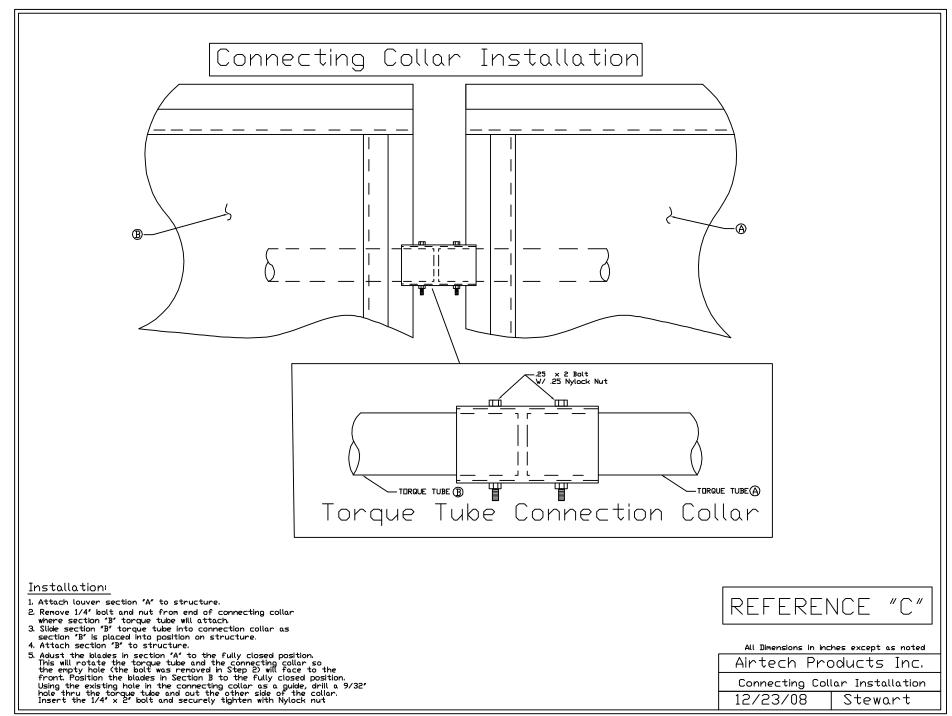
- 1. Hoist the louver (or first louver sub-section) into place making sure the lift is well supported around the perimeter. DO NOT ALLOW THE LOUVER TO RACK or excessively bend during the lifting process.
 - a. For horizontal applications, set the louver onto the mounting surface and visually confirm 100% of the perimeter is supported and resting flat upon the top of the cooler. Make sure the operating mechanism travels freely through the entire range of motion and there is no interference from complete shut to complete open. If the louver is supplied in multiple sections, install the section with the operator first and perform the motion/operation test noted above. Square the louver to the cooler as best you can but above all, be sure the louver remains square do not force to the louver out of square to accommodate the cooler. THE LOUVER MUST BE SQUARE to operate properly. After confirming the louver is properly placed relative to the mounting surface (and to other subsequent sections, if applicable), install a self-drilling screw at each corner and at no greater than 18" centers along all flanges. If applicable, hoist subsequent sections into place and following the above instructions, attach each to the host structure. DO NOT STEP ON LOUVER BLADES AT ANY TIME. If you must step out onto the louver, use dimension lumber or plywood as a walking surface.
 - b. For vertical applications, hoist the louver (or first louver section) into place and after checking for clearance on moving parts, attach to the cooler with a self drilling screw at each corner and at no greater than 18" spaces along all flanges. Install all attachment screws before releasing hoist cables or hoisting device to ensure the louver is fully attached and there is no deflection in the louver frame. If applicable, hoist subsequent sections into place and following the above instructions, attach each to the host structure.
- 2. If the louver is supplied in multiple sections, remove the connecting links / couplers from the shipping box and install them as required at the ends of actuator rods and torque tubes. End link installation instructions are detailed as attached "Reference B" and Torque Tube coupling installation instructions are detailed as attached "Reference C".
- 3. When all sections are installed and connected, test the drive mechanism to ensure it moves freely, without binding or interference. On very large louvers with multiple sections, this may require use of a lever. Small to average size louvers should easily operate by hand strength on the torque tube.
- 4. Complete the installation by attaching any remaining components such as pneumatic actuator or grade level operators. Detailed installation instructions for actuator can be found in its shipping carton. For instructions on grade level operators, refer to www.airtechproducts.com.
- 5. After installing any remaining operators, complete the installation process by cycling the louver several times to ensure it moves freely, without interference and isn't binding at any location. Some adjustment of end links may be required to ensure all louver blades open and shut consistently down the entire length of the louver.
- 6. Check all attachment fasteners to ensure all are properly tightened and completely engaged to the louver flange.
- 7. If applicable, check all end link connections and torque tube couplers to ensure they are properly tightened and fasteners are completely engaged.

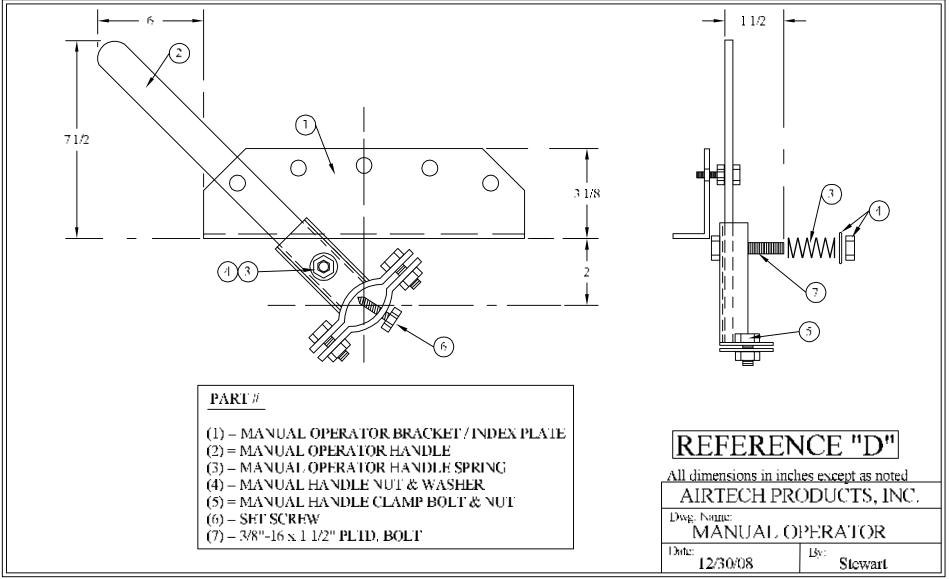
MAINTENANCE INSTRUCTIONS (Annual)

- 1. Visually inspect all blade pins to ensure the pin bearings are in place and do not have unacceptable wear.
- 2. Visually inspect all connections between blade horns and actuator rod to confirm all connecting bearing, bolts and nuts are in place and not showing unacceptable wear.
- 3. Visually inspect all attachment screws to ensure none have backed off or are missing.
- 4. If dirt or grease buildup is excessive, clean louver blades and operating mechanisms with high pressure clear water wash.
- 5. Operate any manual levers or grade level operators to confirm all are in good working order and move freely without binding or interference.
- 6. If actuators are installed, visually inspect the mounting bolts to ensure all are tight and in place. Visually inspect the condition of all connecting links, the clevis and clevis pin.
- 7. Visually inspect all actuator rod end links and torque tube connectors to confirm all are in place and properly engaged.
- 8. Remove any leaves or other debris that may have collected in corners or between the louver blades and integral hailguards.


RECOMMENDED SPARE PARTS LIST

Item Description


- 1. Blade horn bearing, bolt and nut kit
- 2. Actuator rod end link kit
- 3. Torque Tube couplings
- 4. Blade Pin and Pin Bearing kits
- 5. Manual handle kits


Suggested Quantity

1 per 5 Ft² louver area 1 per 2 connections 1 per 2 torque tube connections 5 per 10 Ft² louver area 1

SPARE PARTS

SMITHCO ENGINEERING

7718 E. 91st St. Suite #200 Tulsa, Oklahoma 74133 Phone: (918) 446-4406 Fax: (918) 446-7439

Co: Atlantic Coast Pipeline Ref: 70301548 Date: 7/11/2018

RECOMMENDED SPARE PARTS FOR 2 YEAR OPERATION SMITHCO JOB NO. 2016B286

Item #	QTY	Description	Net Each	Total Net
001	142	A1051832 Plug	\$7.00	\$994.00
002	284	CS1813 gasket	\$.50	\$142.00
003	1	Fan Assembly, Class 10K, Series 48 MAG HD, 12 Ft. 3 Blade	\$17,520.00	\$17,520.00
004	1	2.9375 X 68.05 Shaft with 0.7500 X 0.3750 Keyway 3.18 one end 4.00 other end with keys (2) snap rings	\$746.00	\$746.00
005	1	5 HP Electric Motor, Smithco Job 2016B286	\$2,502.00	\$2,502.00
006	2	2.9375 SCM Flange Bearings	\$399.56	\$799.12
007	1	Matched set of (2) 5VX1320 V-Belt	\$215.20	\$215.20
800	1	3 groove 5V - 37.50 sheave with 2.9375 bore 0.7500 ks	\$1,136.74	\$1,136.74
009	1	2 groove 5V - 4.40 sheave with 1.6250 bore 0.3750 ks	\$76.20	\$76.20
010	1	VS-2EX Vibration Switch	\$320.26	\$320.26
			TOTAL	\$24,451.52

Confirm parts before purchasing

The recommended quantities are for remote locations.

SECTION (4)

MAINTENANCE

WARRANTY CONTACTS

PARTS AND SERVICE MANAGER

Parts, Service and Warranty Manager

Smithco Engineering 6312 S. 39th West Ave. Tulsa, OK 74132 Phone: (918) 388-0325 Fax: (918) 446-7439 E-mail: parts@smithco-eng.com

Parts Sales Associate

Smithco Engineering 6312 S. 39th West Ave. Tulsa, OK 74132 Phone: (918) 388-0328 Fax: (918) 446-7439 E-mail: parts@smithco-eng.com

Equipment Warranty is based on negotiated Terms and Conditions as stated in

Customer PO # A6QJ-4-0405-00

Smithco Job # 2016B297

MAINTENANCE

This section of the manual contains information concerning service and maintenance of your air-cooled heat exchanger.

WARNING: Turn off and lock out or tag power source before proceeding with inspection of the cooler internal surfaces or mechanical equipment.

General Maintenance:

The interior and exterior of the air-cooled heat exchanger should be inspected periodically for safety, damage and cleanliness. All guards provided with the unit must be in place and properly attached. No buildup of grease or dirt should be allowed on any of the components. The finned tubes exterior should be checked for dirty fins and clogging of the fins with dirt or lint. The interior of the tubes should be checked for rust and scale. The thermal design is based on clean exterior and interior heat exchanger surfaces.

Mechanical Equipment References:

VENDOR WEBSITES

Electric Motors:	<u>www.reliance.com</u> <u>www.sea.siemens.com/motors</u>
Fans:	<u>www.cofimco.com</u> <u>www.moorefans.com</u>
Fan Shaft Bearings:	www.dodge-pt.com
V-Belts:	<u>www.gates.com</u> <u>www.dayco.com</u>
Vibration Switches:	<u>www.fwmurphy.com</u> <u>www.metrix1.com</u> <u>www.icca.invensys.com</u> (Robert Shaw)
Spiral Bevel Gear Boxes:	<u>www.amarillogear.com</u> <u>www.hubcityinc.com</u>
Louver Actuators/Controllers:	www.airtechproducts.com www.emersonprocess.com
Louvers:	www.airtechproducts.com

ELECTRICAL MOTOR MAINTANENCE

<u>WARNING! Turn off and lock out or tag power source</u> <u>before proceeding</u>

Inspection:

Each motor should be inspected at regular intervals. The frequency and thoroughness will depend on the amount of operation, nature of service and the environment.

Cleanliness:

The motor exterior should be kept free of oil, dust, dirt, water and chemicals. For fan-cooled motors, it is important to keep the air intake opening clear of debris.

Moisture:

On non-explosion proof TEFC motors, a removable plug in the bottom center of the motor frame permits removal of any accumulated moisture. Drain regularly.

Lubrication Schedule:

Check and re-lubricate bearings every six (6) months (more often if conditions require) as follows:

For best results, grease should be compounded from a lithium soap base and petroleum oil. It should be of No. 2 consistency and stabilized against oxidation. Operating temperature range should be from -15°F - +250°F for Class B insulation and to +300°F for Class F and H. Most major oil companies have special bearing greases that are satisfactory.

CAUTION! Adding grease to bearing when motor is operating may cause grease to go through clearance around inside end cap and be slung onto motor windings.

- 1. Thoroughly clean the grease connections at the ends of the extended lube lines
- 2. Remove plugs from drains
- 3. Remove hardened grease from drains with stiff wire or rod
- 4. Add grease to inlet with hand type gun until small amount of new grease is forced out of the drain
- 5. Clean excess grease from the drains and grease connections and run the motor thirty (30) minutes before replacing the drain plug

V-BELT TENSIONING INSTRUCTIONS

<u>WARNING! Turn off and lock out or tag power source</u> <u>before proceeding</u>

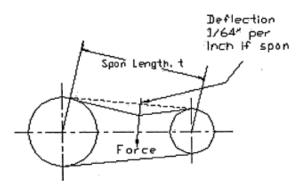
SIMPLIFIED BELT TENSIONING METHOD

This tensioning method assumes average static tensions for drives, thereby eliminating the need for calculating static tension. Use this method if the small sheave diameter, small sheave rpm and speed ratio fall within the limits as given in table number 1, the number of belts used corresponds to the number recommended in this manual and the drive has at least two (2) belts.

Step 1: from TABLE NUMBER 1, determine the force required to deflect one belt 1/64" per inch of span length (length from C to C sheaves along the belt).

- Measure the span length (t) of the drive
- At the center of the span, measure the force required to deflect one belt on the drive 1/64 per inch of span length from its normal position. The adjacent belt can be used as a reference for measuring the deflection. See the figure below TABLE NUMBER 1, PAGE 10. Be sure to apply the force perpendicular to the belt.
- Measure the force required to deflect a band of belts 1/64 per inch of span length as discussed above. Divide the value by the number of belt strands in the band to find the deflection force per belt.

Note: Lay a steel bar or a narrow block of wood across the belt and apply the deflection force to the bar so that all of the individual strands in the band are deflected the same amount. If more than one belt is used in the drive, the neighboring band can be used as a reference for measuring the deflection, just as is done with individual belts. If only one band is used, lay a straightedge or stretch a string from sheave to sheave to use as a reference for measuring the deflection. Lay the straightedge or string across the back of the belt on the sheaves.


Step 2: Compare this deflection with the range of forces given in TABLE NUMBER 1.

- If it is less than the minimum recommended force, the belts tensioned must be increased
- If it is more than the maximum recommended force, the drive tension must be decreased

TABLE NUMBER 1

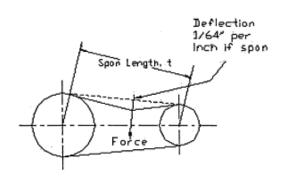
RECOMMENDED DEFLECTION FORCE PER BELT

Cross Section			Belt Deflection Force							Beit Deflection Force			
	Smallest Sheave Diameter	eave RPM	S-L Classic & Polyband		Classic Cog		Cross	Smallest Sneave	RPM	D-V Wrapped		D-V Log	
	Range	Range	Normal	New Belt	Normal	New Balt	- Secool	Range	Range	Normal New	Now Belt	Normal	New Belt
	3.0-3.6	1000-2500 2501-4000	3.7 2.8	5.5	4.1 3,4	6.1 5.0		2.2-2.4	1000-2500 2501-4000			3.3 2.9	4.9 4.3
A, AX	3:8-4.8	1000-2500 2501-4000	4.5 3.8	6.8 5.7	5.0 4.3	74 8.4	зух	2.65-3.65	1000-2500 2501-4000	3.6 3.0	5.1 4.4	4.2 3.8	6.2 5.6
	5.0-7.0	1000-2500 2501-4000	5.4 4.7	8.0 7.0	5.7 5.1	9.4 7.8		4.12-6.90	1000-2500 2501-4000	4.9 4.4	7.3 8.6	5.3 4.9	7.9 7,3
	3.4-4.2	850-2500 2501-4000			4.9 4.2	7.2 6.2		4.4-8.7	500-1749 1750-3000			10.2 8.8 5.6	15.2 13.2
8, 9X	4.4-5.6	860-2500 2501-4000	5.3 4.5	7.9 8.7	7.1	10.5 9.1	5V, 5VX		3001-4000	12.7	18.9	14.8	8.5
	5.8-8.6	860-2500 2501-4000	6.3 6.0	9.4 8.9	8.5 7.3	12.6	34, 340	7.1-10.9	1741-3000	11.2	16.7	13.7	20.1
	7.0-9.0	500-1740 1741-3000	11.5 9.4	17.0 13.8	14.7 11.9	21.8 17.5		11.8-16.0	500-1740 1741-3000	15.5 14.6	23.4 21.8	17.1 16.8	25.5 25.0
C, CX	9.5-16.0	500-1740 1741-3000	14.1	21.0 13.5	15.9 14.6	23.5 21.8	БV	12.5-17.0	200-850 851-1500	33.0 26.8	49.3 39,9		
D	12.0-16.0	200-850 851-1500	24.9 21.2	37.0 31.3			1	18.0-22.4	200-850 851-1500	39.6 35.3	59.2 52.7		
	18.0-20.0	200-850 851-1500	30.4 25.6	45.2 38.0									

HTD BELT TENSIONING INSTRUCTIONS

WARNING! Turn off and lock out or tag power source before proceeding

Belt Tension


HTD drives do not require as much tension as V-belt drives that depend on friction to transmit the load. HTD belts should be installed with a snug fit, neither too taut nor too loose. After the belt has been so tensioned, a force to deflect the belt by an amount to assure proper tension can be measured. Measure the belt span (see scetch). Using a spring scale, apply force perpendicular to the center of the belt width and the center of the belt span. Measure the force necessary to deflect the belt 1/64" for each inch of belt span. For example, the deflection for a 32" belt span is 32 X 1/64 = 1/2 inch deflection. The force required to deflect the belt the amount required at the proper tension is listed in table below.

DEFLECTION FORCE FOR POWER GRIP & POLY CHAIN GT2 BELTS

PITCH	WIDTH	FORCE
8mm	20mm	24 lbs.
	30mm	39 lbs.
	50mm	67 lbs.
	85mm	122 lbs.
14mm	40mm	99 lbs.
	55mm	156 lbs.
	85mm	266 lbs.
	115mm	378 lbs.
	170mm	581 lbs.

NOTE: For belts wider than 2" (50mm), it is suggested that a strip of key stock, or something similar, be placed across the belt under the point of force to prevent distortion.

For drives with shock loading or other unusual conditions, the force may have to be increased for proper operation of the drive.

LUBRICATION OF FAN BEARINGS

The bearings have been greased at the factory and are ready to run. The following table is a general guide for re-lubrication. Operating conditions may require different lubrication periods.

Bearings have been lubricated at the factory with number two consistency lithium base grease which is suitable for normal operating conditions.

Re-lubricate with lithium base grease or grease compatible with original lubricant and suitable for ball bearing service. In certain cases, such as low temperature or high temperature applications, it may be necessary to consult a lubrication supplier for recommendations.

LUBRICATION GUIDE

	Read Preceding Paragraphs Before Establishing Lubrication Schedule.										
Hours	Fan Shaft RPM and										
Run	Suggested Lubrication Period In Weeks										
Per	1	1 251 501 751 1001 1501 2001 2501									
Day	to 250	to 500	to 750	to 1000	to 1500	to 2000	to 2500	to 3000			
	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM ·			
8	12	12	10	7	5	4	3	2			
16	12	7	5	4	2	2	1	1			
24	10	5	3	2	1	1	1	1			

Read Preceding Paragraphs Before Establishing Lubrication Schedule.

GEAR MAINTENANCE

LUBRICATION INSTRUCTIONS

AMBIENT-DEGREES F	15 - 50	50 - 125
AGMA NUMBER	$4\mathrm{EP}$	$5\mathrm{EP}$
VISCOSITY RANGE	$626 - 755 \text{ SSU} @ 100^{\circ}\text{F}$	$918 - 1122 \text{ SSU} @ 100^{\circ}\text{F}$

Consult the gear manufacturer's data for a recommended oil and manufacturer.

SYNTHETIC GEAR LUBRICANTS

Synthetic oils have been used in enclosed gear drives for special operating conditions. Synthetic lubricants can be advantageous over standard oils in that they are generally more stable, have a longer life and operate over a wider temperature range.

INSTRUCTIONS FOR

INSTALLATION AND STARTING NEW UNIT

WARNING! Turn off and lock out or tag power source before proceeding.

1. When unites are shipped, internal parts are protected by rust preventive film. Flushing is not required since it is soluble in the lubricant. Fill the case with recommended lubricant to the proper oil level.

NOTE: Unites may be shipped without oil and must be filled before starting.

- 2. Gear unites may be shipped with the breather port plugged. Prior to operation, a breather type plug (supplied with the unit) must be installed in the upper housing.
- 3. Coupling connections must be aligned for proper parallel and angular misalignment.
- 4. If it is required to shim the gearbox for alignment, care must be taken to prevent distortion of the housing. **NOTE: Coupling and unit alignment should be rechecked after two (2) weeks operation.**
- 5. When units furnished with force feed lubrication are started, it should be confirmed that oil is being pumped.

- 6. For low temperature operation, with oil viscosity at staring greater than 5000 SUV, heaters must be used. For units with pressure lubrication systems, confirm the pump is pumping the cold oil.
- 7. The minimum viscosity required under normal operating conditions ranges from 150 to 400 SUV. Oils having this viscosity under normal operating conditions may not be satisfactory for low temperature starting and heaters must be used.
- 8. Where unit will not warm up under intermittent operating conditions, low viscosity oil may be required for low temperature operation.

WARNING! Turn off and lock out or tag power source before proceeding

OIL CHANGES

After installation, the first oil change should occur after two weeks of operation. After the original oil has been drained, fill the case to the required level with SAE-10 straight run mineral flushing oil containing no additives. Start the fan and let it get up to speed, then stop it. This works as a flushing procedure. Drain the flushing oils and fill with the recommended lubricant to the proper level.

Change the oil every six months unless conditions warrant closer intervals. If the oil temperature is continuously above 200°, or if the unit is subjected to an unusually moist atmosphere, oil changes may be necessary at one, two or three month intervals, as determined by field inspection of the oil.

Prevent any foreign matter from entering the gear case. Dust, dirt, moisture and chemical fumes form sludge.

INSTRUCTIONS FOR MAINTENANCE

- 1. Stop the unit and check the oil level once a week. The lubricant level should be no more than 1/4" below specified level.
- 2. Units should be given daily visual inspections and observation for oil leaks or unusual noises. If either occurs, the cause must be found and corrected.
- 3. The operating temperature of the unit is the temperature of the oil inside the housing. The maximum operating temperature should not exceed 200°F.

INSTRUCTIONS FOR SHUTDOWN PERIODS

If units will be idle for a period longer than a week, it will be necessary to run the unit for ten (10) minutes every week it is idle. This short operation will keep the gears and bearings coated with oil and prevent rusting due to condensation of moisture resulting from temperature changes.

PLUG TIGHTENING PROCEDURE

PLUG TORQUING PROCEDURE

On plug type headers, plugs are installed at room temperature in our plant and have passed a hydrostatic test. Occasionally, field leak testing or heating up of the unit will indicate that some natural relaxation of the load on the gasket has occurred and therefore results in a leak. When this occurs, it is necessary to retighten the plugs in the field. The plugs are already tightened to a minimum torque in Smithco's shop as shown in the following table:

Plug Threaded Diameter	Max Plug Length	Minimum Torque Value (ft-lbs)
1 1/8"	1 1/4"	150
1 1/8"	1 1/2"	200
1 1/8"	1 3/4"	250
1 1/8"	2"	300
1 1/8"	> 2"	400
1 3/8"	1 1/2"	300
1 3/8"	>1 1/4"	400

The coefficient of friction in our shop is for new, well lubricated threads and so therefore field torque values will probably be higher. Giving precise torque values cannot be completely accurate due to the variation in the lubrication and smoothness of the surfaces. A better method of sealing the leaks is as follows:

- 1. Locate the leaking plug.
- 2. Administer an impact using an 18" swing of a 2 pound hammer to the outside face of the plug to assist in the plastic flow of the gasket into the microscopic surface irregularities.
- 3. Turn the plug ½ of a flat (30° rotation) clockwise. This results in approximately 0.007" additional compression on the gasket.
- 4. Repeat steps 1 through 3 just until the leak is sealed. Do not repeat steps 1 through 3 more than four (4) times. After the 4th time, remove the plug. Check the gasket surfaces and recondition if necessary. Replace the gasket and start the process from the initial torque step.

The plugs are NOT indestructible. The threaded surfaces should be in good condition. We recommend against the use of impact wrenches, however, any plugs damaged by use of an impact wrench should be replaced.

Box Wrenches

Striking-Face Box Wrenches

Rap the large striking surface with a hammer when extreme force is necessary to lossen and set large fasteners. Wrenches are made of forged steel with a black finish. Meet Fed. Spec. GGG-W-636e. **Offset**—Handle is offset 45° to help clear obstructions. **Straight**—Designed to apply maximum force directly through the handle to the fastener head and to keep wrench head on the fastener when wrench is struck. **Head O'all**

14.5

12-Point Straight

6-Point Straight

					fastener	when wre	ench is struck.					
Size	Head O'all Thick. Lg.	Each	Size	Head Thick.			Each	Size	Head Thick.	O'alí Lg.		Each
12-Point	Offect		12-Point C	feet (Co	nt)			12-Point Str	aight (Cont.)		
	m) ¹ /16" 10" 5455A	11 \$31 16	21%1s"(75m	m) 13/4"	161/20"	5455829	\$115.67	2%16"(65mm)	125/30"	131/20"	5456A26	106 25
	3⁄4"11"		3"	13//	161/20	5455A31	119.08	25/s"				
	m) ¾"11" 5455A		31/s"(80mm	13/4"	161/52"	5455A32	121.92	23/4"(70mm).				
11/4"(32mn	n) 3/4"11" 5455A	13 34 37	33/8"	2"	181/4"	5455A61	177.14	215/16"(75mm)				
			31/2"	2"	181/4"	5455A62	184.78	3"				
1%16"	3⁄4″11″ 5455A	14 35.67	33/4"				195.10	31/6"(80mm).	29/20	175/./	54566492	109.00
1%"	7/8"1117/32" 5455A	36. 39.80	31/8"	2"	181/4"	5455A64	226.37	3% (85mm).	29/02	175/	5456434	217.90
1//16"	⁷ / ₈ "11 ¹⁷ / ₃₂ " 5455A	15. 41.47	41/8"	2"	181/4"	5455A65	238.50	31/2*				
11/2"	1" 121/32" 5455A	16. 43.03	41/4"		181/4"	5455A66	240.44	3¾"				273.52
36mm	11 ¹ 7/32" 5455A	51 48.35	12-Point S	traight				37/8"	23/4"	18"	5456437	
1%16"	11/s" 121/2" 5455A	33. 49.90	11/16"(27m)		91/6"	5456A47	34.22					
15%"(41mn	n) 1″ 121/32″ 5455A	17. 49.70	1¾16"(30mi				32.97	41/8" 41/4"	298	10"	5450A30	324.91
111/16"	1 ¼" 12%16" 5455A	18. 52.41	11/4"(32mm	1) 7/6"	7%16"	5456A11	30.95	41/2"	278	04*	EAECAAA	
1¾″	11/s" 12%1s" 5455A	42 56.58	15/16"	7/6"	7%15"	5456A12	30.96	45/8"	274	21"	5456842	466 50
1¹¾/16″(46m	m) 11/s"12%is" 5455A	19. 57.86	13/8"	15/16"	81/4"	5456A51	32.68	470	674	6 1	0100412	400.00
17/8"	11/4" 131/32" 5455A	21 61.01	17/16"	15/40"	81/4"	5456A13	32.67	6-Point Stra	iaht			
115/16"	11/4" 131/32" 5455A	43 61.91	11/2"				34.81	11/16"		. 97/6"	8341A41	25.76
50mm	11⁄4″ 131⁄32″ 5455A	52 70.74	36mm	31/32"	721/32	5456A53	36.73	11/4"				25.76
2"	11/4" 131/32" 5455A	22. 63.31	1% (41mm	1). 15/32"	727/32	5456A15	37.04	17/16"				31.45
	11/6" 123/4" 5455A		1"/16"	15/32"	727/32	5456A16	39.48	15⁄/8"				38.00
21/8"	1%8" 1319/32" 5455A	44. 64.94	13/4"				40.23	113/16"	63/64°.	115/10"	8341A45	38.00
2¾1€″(55m	m) 1%"131%2" 5455A	23 68.02	113/16"(46m	m) 17/20"	715/16	5456417	40.46	2″	115/64"	$1111/16^{6}$	8341A46	45.63
21/4"	13/8" 13 ^{19/} 32" 5455A	24. 72.40	17/8"	11/4"	10'	5456A21	42.85	23/16"				57.12
25/16"		49 74.03	50mm	113/32"	115%"	5456A54	73.63	23/6"				60.83
	n) 11/2" 14 1/8" 5455A		2"				60.71	2%16"	131/84".	1211/16"	8341A49	66.21
	11/2" 141/s" 5455A		21/16"	13/4"	11978	5456452	64.44	2¾"	133/64".	131⁄16″	8341A51	91.47
	m) 11/2"141/6"5455A		21/8"	17/16"	12"	5456A29	68.97	215/16"	133/64".	137/16"	8341A52	100.41
			2%s"(55m	m) 117/10"	113/4"	5456A23	74.48	31/a"	137/64"	1313/16"	8341A53	117.04
	n)1%s"151/32" 5455A		21/4"	117/32	113/4"	5456A24	79.13	31/2"				153.10
			2%"(60mn	121/30"	1 129/20	5456A25	93.94	37/8"				216.69
£ 70		10	- 10 (Oomin)	V-1 146.								