Chattanooga Boiler and Tank Company

1011 E. Main St.

Chattanooga, TN 37408

COMPRESS Pressure Vessel Design Calculations

Item:	Recovered Water Drum
Vessel No:	DR0004
Customer:	Southern Company, Inc.
Designer:	Naveen K Madasetty
Rev-Date:	1 - 5/16/2011
Vessel Name:	2084-02.CW7

Quality Record MM76380 Α Plant: Kemper County CHATT Southern Company Generation DR0004 2084-02-CALC Rev: 1 CHATTANOOGA BOILER & TANK CO. Approved PO: MPC10014852

Revision History

No.	Date	Operator	Notes
0	2/28/2011	bturner	Customer Approval
1	5/16/2011	Naveen K Madasetty	 All Nozzle's Calcs added Nozzle "C" Size Change, Lifting & Tailing Lug Calcs Added

Table Of Contents

- 1. Revision History
- 2. Settings Summary
- 3. Pressure Summary
- 4. Thickness Summary
- 5. Weight Summary
- 6. Nozzle Schedule
- 7. Nozzle Summary
- 8. Hydrostatic Test
- 9. Wind Code
- 10. Seismic Code
- 11. Top Head
- 12. Straight Flange on Top Head
- 13. <u>Shell-02</u>
- 14. <u>Shell-01</u>
- 15. Straight Flange on Bottom Head
- 16. Bottom Head
- 17. Support Legs
- 18. Liquid Level
- 19. Pump Suction (A)
- 20. Inlet (B)
- 21. Vapor Outlet (C)
- 22. <u>Makeup Inlet (D)</u>
- 23. Level Glass (K1)
- 24. Level Glass (K2)
- 25. <u>Level (L2)</u>
- 26. <u>Level (L1)</u>
- 27. <u>Manway (M)</u>
- 28. Nitrogen Inlet (N)
- 29. <u>Recirc Inlet (R)</u>
- 30. Lifting Lug
- 31. Tailing Lug

Settings Summary

COMPRESS Build 7110

Units: U.S. Customary

Datum Line Location: -2.00" from bottom seam

Design

ASME Section VIII Division 1, 2010 Edition

Design or Rating:	Get Thickness from Pressure
Minimum thickness:	0.0625" per UG-16(b)
Design for cold shut down only:	No
Design for lethal service (full radiography required):	No
Design nozzles for:	Larger of MAWP or MAP
Corrosion weight loss:	100% of theoretical loss
UG-23 Stress Increase:	1.20
Skirt/legs stress increase:	1.0
Minimum nozzle projection:	8"
Juncture calculations for α > 30 only:	Yes
Preheat P-No 1 Materials > 1.25" and <= 1.50" thick:	No
UG-37(a) shell tr calculation considers longitudinal stress: Butt welds are tapered per Figure UCS-66.3(a).	No

Hydro/Pneumatic Test

Shop Hydrotest Pressure:	1.3 times design P
Test liquid specific gravity:	1.00
Maximum stress during test:	90% of yield

Required Marking - UG-116

UG-116(e) Radiography:	RT4
UG-116(f) Postweld heat treatment:	None

Code Cases Interpretations

Use Code Case 2547:	No
Apply interpretation VIII-1-83-66:	No
Apply interpretation VIII-1-86-175:	Yes
Apply interpretation VIII-1-83-115:	No
Apply interpretation VIII-1-01-37:	Yes
No UCS-66.1 MDMT reduction:	No
No UCS-68(c) MDMT reduction:	No
Disallow UG-20(f) exemptions:	No

UG-22 Loadings

UG-22(a) Internal or External Design Pressure :YesUG-22(b) Weight of the vessel and normal contents under operating or test conditions:Yes

UG-22(c) Superimposed static reactions from weight of attached equipment (external loads):	No
UG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs:	Yes
UG-22(f) Wind reactions:	Yes
UG-22(f) Seismic reactions:	Yes
UG-22(j) Test pressure and coincident static head acting during the test:	Yes
Note: UG-22(b),(c) and (f) loads only considered when supports are present.	

Pressure Summary

Identifier	P Design (psi)	T Design (°F)	MAWP (psi)	MAP (psi)	MDMT (°F)	MDMT Exemption		Impact Tested
Top Head	55	160	64.36	107.7	-55	Note 1		No
Straight Flange on Top Head	55	160	149.52	225.73	-55	Note 2		No
Shell-02	55	160	92.44	160.08	-55	Note 3		No
Shell-01	55	160	88.22	160.08	-55	Note 4		No
Straight Flange on Bottom Head	55	160	142.52	225.73	-55	Note 6		No
Bottom Head	55	160	56.88	107.7	-55	Note 5		No
Support Leas	55	160	56.88	N/A	N/A	N/A		N/A
Pump Suction (A)	55	160	56.88	107.7	-55	Note 7		No
Inlet (B)	55	160	56.88	107.7	-55	Nozzle	Note 8	No
						Pad	Note 9	No
Vapor Outlet (C)	55	160	56.88	107.7	-55	Note 10		No
Makeup Inlet (D)	55	160	56.88	107.7	-55	Nozzle	Note 11	No
						Pad	Note 12	No
Level Glass (K1)	55	160	56.88	107.7	-55	Note 13		No
Level Glass (K2)	55	160	56.88	107.7	-55	Note 14		No
Level (L1)	55	160	56.88	107.7	-55	Note 13		No
Level (L2)	55	160	56.88	107.7	-55	Note 14		No
Manway (M)	55	160	56.88	107.7	-55	Nozzle	Note 15	No
						Pad	Note 16	No
Nitrogen Inlet (N)	55	160	56.88	107.7	-55	Note 17		No
Recirc Inlet (R)	55	160	56.88	107.7	-55	Note 18		No

Pressure Summary for Chamber bounded by Bottom Head and Top Head

Chamber design MDMT is 10 °F

Chamber rated MDMT is -55 °F @ 56.88 psi

Chamber MAWP hot & corroded is 56.88 psi @ 160 °F

Chamber MAP cold & new is 107.7 psi @ 70 °F

This pressure chamber is not designed for external pressure.

Design notes are available on the <u>Settings Summary</u> page.

Component Identifier	Material	Diameter (in)	Length (in)	Nominal t (in)	Design t (in)	Total Corrosion (in)	Joint E	Load
Top Head	SA-516 70	66 ID	11.5505	0.3125*	0.2855	0.125	1.00	Internal
Straight Flange on Top Head	SA-516 70	66 ID	2	0.375	0.2175	0.125	1.00	Internal
Shell-02	SA-516 70	66 ID	76	0.3125	0.2392	0.125	0.85	Internal
Shell-01	SA-516 70	66 ID	118	0.3125	0.2474	0.125	0.85	Internal
Straight Flange on Bottom Head	SA-516 70	66 ID	2	0.375	0.2292	0.125	1.00	Internal
Bottom Head	SA-516 70	66 ID	11.5505	0.3125*	0.3071	0.125	1.00	Internal

Thickness Summary

Nominal t: Vessel wall nominal thickness

Design t: Required vessel thickness due to governing loading + corrosion

Joint E: Longitudinal seam joint efficiency

* Head minimum thickness after forming

Load

internal: Circumferential stress due to internal pressure governs

external: External pressure governs

Wind: Combined longitudinal stress of pressure + weight + wind governs

Seismic: Combined longitudinal stress of pressure + weight + seismic governs

Weight Summary

	Weight (Ib) Contributed by Vessel Elements								
Component	Metal New*	Metal Corroded [*]	Insulation & Supports	Lining	Piping + Liquid	Operating Liquid	Test Liquid	Area ft ²	
Top Head	402.8	245.8	45.9	0	0	1,111.8	1,102.7	32	
Shell-02	1,395.7	839	151.7	0	0	9,369.3	9,392.7	110	
Shell-01	2,128.2	1,279.4	235.6	0	0	14,660	14,697.5	168	
Bottom Head	403.2	246	45.9	0	0	1,113.5	1,104.4	32	
Support Legs	650.2	650.2	0	0	0	0	0	53	
TOTAL:	4,980	3,260.4	479	0	0	26,254.5	26,297.3	395	

* Shells with attached nozzles have weight reduced by material cut out for opening.

	Weight (Ib) Contributed by Attachments									
Component	Body Flanges		Nozzles & Flanges		Packed Beds	Ladders &	Trays & Supports	Rings &	Vertical	Surface Area ft ²
	New	Corroded	New	Corroded		Flationins				
Top Head	0	0	58.5	58.1	0	0	0	0	0	3
Shell-02	0	0	70.8	68.3	0	0	0	23.5	0	6
Shell-01	0	0	889.4	888	0	0	0	10	0	18
Bottom Head	0	0	52.7	52.4	0	0	0	0	0	3
Support Legs	0	0	0	0	0	0	0	0	0	0
TOTAL:	0	0	1,071.3	1,066.8	0	0	0	33.5	0	30

Vessel operating weight, Corroded:	31,094 lb
Vessel operating weight, New:	32,598 lb
Vessel empty weight, Corroded:	4,840 lb
Vessel empty weight, New:	6,564 lb
Vessel test weight, New:	32,382 lb
Vessel surface area:	425 ft ²

Vessel center of gravity location - from datum - lift condition

Vessel Lift Weight, New:6,085 lbCenter of Gravity:77.3689"Note: Vessel lift weight includes weight of insulation supports as they are assumed to be shop installed.

Vessel Capacity

Vessel Capacity** (New): 3,136 US gal Vessel Capacity** (Corroded): 3,162 US gal **The vessel capacity does not include volume of nozzle, piping or other attachments.

Nozzle	Osmiss	0:				N	laterials									
mark	Service	Size	Nozzle	Impact	Norm	Fine Grain	Pad	Impact	Norm	Fine Grain	Flange WN A105 Class 150 WN A105 Class 150					
A	Pump Suction	NPS 8 Sch 40 (Std)	SA-106 B Smls pipe	No	No	No	N/A	N/A	N/A	N/A	WN A105 Class 150					
B	Inlet	NPS 8 Sch 40 (Std)	SA-106 B Smls pipe	No	No	No	SA-516 70	No	No	No	WN A105 Class 150					
<u>C</u>	Vapor Outlet	NPS 8 Sch 40 (Std)	SA-106 B Smls pipe	No	No	No	N/A	N/A	N/A	N/A	WN A105 Class 150					
D	Makeup Inlet	NPS 6 Sch 40 (Std)	SA-106 B Smls pipe	No	No	No	SA-516 70	No	No	No	WN A105 Class 150					
<u>K1</u>	Level Glass	NPS 2 Sch 80 (XS)	SA-106 B Smls pipe	No	No	No	N/A	N/A	N/A	N/A	WN A105 Class 150					
<u>K2</u>	Level Glass	NPS 2 Sch 80 (XS)	SA-106 B Smls pipe	No	No	No	N/A	N/A	N/A	N/A	WN A105 Class 150					
<u>L1</u>	Level	NPS 1.5 Sch 80 (XS)	SA-106 B Smls pipe	No	No	No	N/A	N/A	N/A	N/A	WN A105 Class 150					
<u>L2</u>	Level	NPS 1.5 Sch 80 (XS)	SA-106 B Smls pipe	No	No	No	N/A	N/A	N/A	N/A	WN A105 Class 150					
М	Manway	23.25 IDx0.38	SA-516 70	No	No	No	SA-516 70	No	No	No	SO A105 Class 150					
N	Nitrogen Inlet	NPS 2 Sch 80 (XS)	SA-106 B Smls pipe	No	No	No	N/A	N/A	N/A	N/A	WN A105 Class 150					
<u>R</u>	Recirc Inlet	NPS 3 Sch 40 (Std)	SA-106 B Smls pipe	No	No	No	N/A	N/A	N/A	N/A	WN A105 Class 150					

Nozzle Schedule

Nozzle	OD	t	Req t	A.2	A-2	Shell		Reinforcement Pad		Corr	A_/A_	
mark	(in)	(in)	(in) ⁿ	~1.	A 2:	Nom t (in)	Design t (in)	User t (in)	Width (in)	t (in)	(in)	(%)'
Δ	8.625	0.322	0.2664	Yes	Yes	0.3125*	0.1778		N/A	N/A	0	107.5
B	8.625	0.322	0.2637	Yes	Yes	0.3125	0.1783		3	0.25	0	211.5
<u>C</u>	8.625	0.322	0.2509	Yes	Yes	0.3125*	0.1778		N/A	N/A	0	107.5
D	6.625	0.28	0.2529	Yes	Yes	0.3125	0.1783		3	0.25	0	271.0
<u>K1</u>	2.375	0.218	0.154	Yes	Yes	0.3125	N/A		N/A	N/A	0	Exempt
<u>K2</u>	2.375	0.218	0.154	Yes	Yes	0.3125	N/A		N/A	N/A	0	Exempt
<u>L1</u>	1.9	0.2	0.145	Yes	Yes	0.3125	N/A		N/A	N/A	0	Exempt
<u>L2</u>	1.9	0.2	0.145	Yes	Yes	0.3125	N/A		N/A	N/A	0	Exempt
M	24	0.375	0.2312	Yes	Yes	0.3125	0.1783		4	0.375	0	129.9
N	2.375	0.218	0.154	Yes	Yes	0.3125*	N/A		N/A	N/A	0	Exempt
<u>R</u>	3.5	0.216	0.216	Yes	Yes	0.3125	N/A		N/A	N/A	0	Exempt

Nozzle Summary

t_n: Nozzle thickness

Req t_n: Nozzle thickness required per UG-45/UG-16

Nom t: Vessel wall thickness

Design t: Required vessel wall thickness due to pressure + corrosion allowance per UG-37

User t: Local vessel wall thickness (near opening)

A_a: Area available per UG-37, governing condition

A_r: Area required per UG-37, governing condition

Corr: Corrosion allowance on nozzle wall

* Head minimum thickness after forming

Shop test pressure determination for Chamber bounded by Bottom Head and Top Head based on design P per UG-99(b)

Shop hydrostatic test gauge pressure is 71.5 psi at 70 °F (the chamber design P = 55 psi)

The shop test is performed with the vessel in the horizontal position.

Identifier	Local test pressure psi	Test liquid static head psi	UG-99 stress ratio	UG-99 pressure factor	Stress during test psi	Allowable test stress psi	Stress excessive?
Top Head (1)	74.183	2.683	1	1.30	7,834	34,200	No
Straight Flange on Top Head	74.183	2.683	1	1.30	6,565	34,200	No
Shell-02	74.183	2.683	1	1.30	7,871	34,200	No
Shell-01	74.183	2.683	1	1.30	7,871	34,200	No
Straight Flange on Bottom Head	74.183	2.683	1	1.30	6,565	34,200	No
Bottom Head	74.183	2.683	1	1.30	7,834	34,200	No
Inlet (B)	74.483	2.983	1	1.30	8,488	51,300	No
Level (L1)	73.018	1.518	1	1.30	9,649	51,300	No
Level (L2)	73.018	1.518	1	1.30	9,649	51,300	No
Level Glass (K1)	73.026	1.526	1	1.30	10,382	51,300	No
Level Glass (K2)	73.026	1.526	1	1.30	10,382	51,300	No
Makeup Inlet (D)	74.123	2.623	1	1.30	5,299	51,300	No
Manway (M)	71.789	0.289	1	1.30	16,273	51,300	No
Nitrogen Inlet (N)	73.715	2.215	1	1.30	10,565	51,300	No
Pump Suction (A)	73.135	1.635	1	1.30	12,924	51,300	No
Recirc Inlet (R)	74.483	2.983	1	1.30	13,075	51,300	No
Vapor Outlet (C)	73.135	1.635	1	1.30	12,924	51,300	No

Notes:

(1) Top Head limits the UG-99 stress ratio.

(2) P₁ stresses at nozzle openings have been estimated using the method described in PVP-Vol. 399, pages 77-82.

(3) $1.5*0.9*S_y$ used as the basis for the maximum local primary membrane stress at the nozzle intersection P_L. (4) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-most flange.

The field test condition has not been investigated for the Chamber bounded by Bottom Head and Top Head.

The test temperature of 70 °F is warmer than the minimum recommended temperature of -25 °F so the brittle fracture provision of UG-99(h) has been met.

Wind Code

Building Code:	ASCE 7-05
Elevation of base above grade:	0.0000 ft
Increase effective outer diameter by:	2.0000 ft
Wind Force Coefficient Cf:	0.8000
Basic Wind Speed:, V:	100.0000 mph
Importance Factor:, I:	1.1500
Exposure category:	С
Wind Directionality Factor, Kd:	0.9500
Top Deflection Limit:	6 in. per 100 ft.
Topographic Factor, Kzt:	1.0000
Enforce min. loading of 10 psf:	No

Vessel Characteristics

Vessel height, h:	22.4625 ft
Vessel Minimum Diameter, b	
Operating, Corrod	ed: 5.8854 ft
Empty, Corrod	ed: 5.8854 ft
Fundamental Frequency, n ₁	
Operating, Corrod	ed: 3.0287 Hz
Empty, Corrod	ed: 8.1494 Hz
Damping coefficient, β	
Operating, Corrod	ed: 0.0260
Empty, Corrod	ed: 0.0210
Vortex Shedding Calculations	
Table Lookup Values	

2.4.1 Basic Load Combinations for Allowable Stress Design

The following load combinations are considered in accordance with ASCE section 2.4.1:

5. $D + P + P_s + W$ 7. $0.6D + P + P_s + W$ Where D = Dead load P = Internal or external pressure load P_s = Static head load W = Wind load

Wind Deflection Reports:

Operating. Corroded Empty. Corroded Operating. Corroded. Vortex Shedding Vacuum. Corroded. Vortex Shedding Wind Pressure Calculations Wind Pressures at Oritical Speed: Operating. Corroded Wind Pressures at Critical Speed: Vacuum. Corroded

Wind Deflection Report: Operating, Corroded

Component	Elevation of bottom above base (in)	Effective OD (ft)	Elastic modulus E (10 ⁶ psi)	Inertia I (ft ⁴)	Platform wind shear at Bottom (lbf)	Total wind shear at Bottom (lbf)	bending moment at Bottom (lbf-ft)	Deflection at top (in)		
Top Head	256	7.89	29.0	*	0	143	92	0.0908		
Shell-02	180	7.89	29.0	1.041	0	1,056	4,093	0.0904		
Shell-01 (top)	62	7.89	29.0	1.041	0	2,367	23,035	0.0882		
Support Legs	0	0	29.0	0.003839	0	2,506	35,908	0.0863		
Shell-01 (bottom)	62	7.89	29.0	1.041	0	140	76	0.0863		
Bottom Head	62	7.89	29.0	*	0	129	65	0.0863		
*Moment of I	*Moment of Inertia I varies over the length of the component									

Wind Deflection Report: Empty, Corroded

Component	Elevation of bottom above base (in)	Effective OD (ft)	Elastic modulus E (10 ⁶ psi)	Inertia I (ft ⁴)	Platform wind shear at Bottom (lbf)	Total wind shear at Bottom (Ibf)	bending moment at Bottom (lbf-ft)	Deflection at top (in)
Top Head	256	7.89	29.4	*	0	143	92	0.0907
Shell-02	180	7.89	29.4	1.041	0	1,056	4,093	0.0903
Shell-01 (top)	62	7.89	29.4	1.041	0	2,367	23,035	0.0882
Support Legs	0	0	29.0	0.003839	0	2,506	35,908	0.0863
Shell-01 (bottom)	62	7.89	29.4	1.041	0	140	76	0.0863
Bottom Head	62	7.89	29.4	*	0	129	65	0.0863
*Moment of I	nertia I varies	s over the le	angth of the co	mponent	[

Wind Deflection Report: Operating, Corroded, Vortex Shedding

Component	Elevation of bottom above base (in)	Effective OD (ft)	Elastic modulus E (10 ⁶ psi)	Inertia I (ft ⁴)	Platform wind shear at Bottom (lbf)	Total wind shear at Bottom (Ibf)	bending moment at Bottom (lbf-ft)	Deflection at top (in)		
Top Head	256	7.89	29.0	*	0	227	148	0.0739		
Shell-02	180	7.89	29.0	1.041	0	1,510	5,832	0.0734		
Shell-01 (top)	62	7.89	29.0	1.041	0	1,942	24,919	0.0707		
Support Legs	0	0	29.0	0.003839	0	1,989	35,168	0.0684		
Shell-01 (bottom)	62	7.89	29.0	1.041	0	46	25	0.0684		
Bottom Head	62	7.89	29.0	*	0	42	21	0.0684		
*Moment of I	*Moment of Inertia I varies over the length of the component									

Wind Deflection Report: Vacuum, Corroded, Vortex Shedding

Component	Elevation of bottom above base (in)	Effective OD (ft)	Elastic modulus E (10 ⁶ psi)	Inertia I (ft ⁴)	Platform wind shear at Bottom (lbf)	Total wind shear at Bottom (Ibf)	bending moment at Bottom (lbf-ft)	Deflection at top (in)
Top Head	256	7.89	29.0	*	0	227	148	0.0739
Shell-02	180	7.89	29.0	1.041	0	1,510	5,832	0.0734
Shell-01 (top)	62	7.89	29.0	1.041	0	1,942	24,919	0.0707
Support Legs	0	0	29.0	0.003839	0	1,989	35,168	0.0684
Shell-01 (bottom)	62	7.89	29.0	1.041	0	46	25	0.0684
Bottom Head	62	7.89	29.0	*	0	42	21	0.0684

Wind Pressure (WP) Calculations

Gust Factor (G⁻) Calculations

 $Kz = 2.01 * (Z/Zg)^{2/\alpha}$ = 2.01 * (Z/900.0000)^{0.2105} qz = 0.00256 * Kz * Kzt * Kd * V^2 * 1 psf = 0.00256 * Kz * 1.0000 * 0.9500 * 100.0000² * 1.1500 = 27.9680 * Kz WP = qz * G * Cf = qz * G * 0.8000

Design Wind Pressures

Height Z (')	Kz	qz (psf)	WP: Operating (psf)	WP: Empty (psf)	WP: hydrotest (psf)	WP: Vacuum (psf)
15.0	0.8489	23.74	17.04	17.04	N.A.	N.A.
20.0	0.9019	25.22	18.11	18.11	N.A.	N.A.
25.0	0.9453	26.44	18.98	18.98	N.A.	N.A.

Design Wind Force determined from: F = Pressure * Af , where Af is the projected area.

Vortex Shedding Calculations

Vortex shedding calculations are based on NBC 1995 building code, Structural Commentaries (Part 4).

Average diameter of vessel (upper third):	D = 5.3434 ft
Aspect ratio:	Ar = 4.2038
Vortex shedding factor, Operating, Corroded:	C ₁ = 1.5377
Vortex shedding factor, Operating, Corroded:	$C_2 = 0.6000$
Vortex shedding factor, Vacuum, Corroded:	C ₁ = 1.5377
Vortex shedding factor, Vacuum, Corroded:	$C_2 = 0.6000$
Weight per foot of vessel, Operating, Corroded, (upper third):	M = 1595.4277 lb/ft
Strouhal number, Operating, Corroded:	S = 0.2000
Weight per foot of vessel, Empty, Corroded, (upper third):	M = 191.9325 lb/ft
Strouhal number, Empty, Corroded:	S = 0.2000
Weight per foot of vessel, Vacuum, Corroded, (upper third):	M = 1595.4277 lb/ft
Strouhal number, Vacuum, Corroded:	S = 0.2000

Critical wind speed at top of vessel, $V_h = (n^*D/S)^*(3600/5280)$ mph

Operating, Corroded: V_{Ref} = 57,4515 mph (92.4591 km/h) Empty, Corroded: V_{Ref} = 154.5841 mph (248.7790 km/h)

Vacuum, Corroded: $V_{Ref} = 57.4515 \text{ mph} (92.4591 \text{ km/h})$ Corresponding reference wind speed, V_{Ref}

Speed for empty, corroded condition which produces vortex shedding is greater than reference speed. No further vortex shedding computations were done for this condition.

Corresponding pressure at top of vessel, q_h = 0.00256 * V_h²

```
Operating,

Corroded:

Vacuum, Corroded:

FL = 7.7924*1.5377*5.3434 / (SQR(4.2038)*SQR(0.0260 - (0.6000*0.0765*(5.3434)^2/1595.4277)))

= 196.8259 lb/ft

FL = 7.7924*1.5377*5.3434 / (SQR(4.2038)*SQR(0.0260 - (0.6000*0.0765*(5.3434)^2/1595.4277)))

= 196.8259 lb/ft
```

Static loading FL is applied throughout the top third of the vessel

Wind Pressures at Critical Wind Speed: Operating, Corroded (V_h = 55.1717 mph)

```
Kz = 2.01 * (Z/Zg)^{2/2}
= 2.01 * (Z/900.0000)^{0.2105}
qz = 0.00256 * Kz * Kd * Kzt * <u>Vh</u><sup>2</sup> * <u>I</u> psf
= 0.00256 * Kz * 0.9500 * 1.0000 * (55.1717)<sup>2</sup> * 1.1500
= 8.5132 * Kz
WP = qz * <u>G</u><sup>-</sup> * <u>Cf</u>
```

```
= qz * 0.8973 * 0.8000
```

Height Z(')	Kz	qz(psf)	WP(psf)
15.0	0.8489	7.2267	5.1879
20.0	0.9019	7.6779	5.5118
25.0	0.9453	8.0472	5.7769

Wind Pressures at Critical Wind Speed: Vacuum, Corroded (V_h = 55.1717 mph)

```
Kz = 2.01 * (Z/\underline{Zg})^{2/\underline{\alpha}}
= 2.01 * (Z/900.0000)<sup>0.2105</sup>
qz = 0.00256 * Kz * Kd * Kzt * <u>Vh<sup>2</sup></u> <u>1</u> psf
= 0.00256 * Kz * 0.9500 * 1.0000 * (55.1717)<sup>2</sup> * 1.1500
= 8.5132 * Kz
WP = qz * <u>G<sup>-</sup></u> * <u>Cf</u>
= qz * 0.8973 * 0.8000
Height Z(') Kz qz(psf) WP(psf)
```

15.0	0.8489	7.2267	5.1879
20.0	0.9019	7.6779	5.5118
25.0	0.9453	8.0472	5.7769

Gust Factor Calculations

Operating, Corroded Empty, Corroded Operating, Corroded, Vortex Shedding Vacuum, Corroded, Vortex Shedding

Gust Factor Calculations: Operating, Corroded

Vessel is considered a rigid structure as $n^{}_1$ = 3.0287 Hz \geq 1 Hz.

z	= 0.60 * <u>h</u>
	= 0.60 * 22.4625
	= 15.0000
l _z -	$= \underline{c} * (33 / z^{-})^{1/6}$
	= 0.2000 * (33 / 15.0000) ^{1/6}
	= 0.2281
L _z -	= <u> </u> * (z ⁻ / 33) ^{ep}
_	= 500.0000 * (15.0000 / 33) ^{0.2000}
	= 427.0566
Q	= Sqr(1 / (1 + 0.63 * ((<u>b</u> + <u>h</u>) / L _z -) ^{0.63}))
	= Sqr(1 / (1 + 0.63 * ((5.8854 + 22.4625) / 427.0566) ^{0.63}))
	= 0.9474
G	= 0.925 * (1 + 1.7 * <code>g * l * Q) / (1 + 1.7 * <code>g * l)</code></code>
	= 0.925 * (1 + 1.7 * 3.40* 0.2281 * 0.9474) / (1 + 1.7 * 3.40 * 0.2281)
	= 0.8973

Gust Factor Calculations: Empty, Corroded

Vessel is considered a rigid structure as $n^{}_1$ = 8.1494 Hz \geq 1 Hz.

$$z^{-} = 0.60 * h$$

= 0.60 * 22.4625
= 15.0000
$$I_{z^{-}} = c * (33 / z^{-})^{1/6}$$

= 0.2000 * (33 / 15.0000)^{1/6}
= 0.2281
$$L_{z^{-}} = I * (z^{-} / 33)^{ep}$$

= 500.0000 * (15.0000 / 33)^{0.2000}
= 427.0566
Q = Sqr(1 / (1 + 0.63 * ((b + h) / L_{z^{-}})^{0.63}))
= 0.9474

 $\begin{array}{l} \mathsf{G} & = 0.925 * (1 + 1.7 * \underline{\mathsf{g}}_{\mathsf{Q}} * \mathsf{I}_{z^{-}} * \mathsf{Q}) \, / \, (1 + 1.7 * \underline{\mathsf{g}}_{\mathsf{v}} * \mathsf{I}_{z^{-}}) \\ & = 0.925 * (1 + 1.7 * 3.40 * 0.2281 * 0.9474) \, / \, (1 + 1.7 * 3.40 * 0.2281) \\ & = 0.8973 \end{array}$

Gust Factor Calculations: Operating, Corroded, Vortex Shedding

Vessel is considered a rigid structure as $n^{}_1$ = 3.0287 Hz \geq 1 Hz.

z	= 0.60 * <u>h</u>
	= 0.60 * 22.4625
	= 15.0000
l _z -	$= \underline{c} * (33 / z^{-})^{1/6}$
	= 0.2000 * (33 / 15.0000) ^{1/6}
	= 0.2281
L _z -	= <u> </u> * (z ⁻ / 33) <u>ep</u>
	= 500.0000 * (15.0000 / 33) ^{0.2000}
	= 427.0566
Q	= Sqr(1 / (1 + 0.63 * ((<u>b</u> + <u>h</u>) / L _z -) ^{0.63}))
	= Sqr(1 / (1 + 0.63 * ((5.8854 + 22.4625) / 427.0566) ^{0.63}))
	= 0.9474
G	= 0.925 * (1 + 1.7 * g _Q * l _z - * Q) / (1 + 1.7 * g _y * l _z -)
	= 0.925 * (1 + 1.7 * 3.40* 0.2281 * 0.9474) / (1 + 1.7 * 3.40 *
	0.2281)
	= 0.8973

Gust Factor Calculations: Vacuum, Corroded, Vortex Shedding

Vessel is considered a rigid structure as $n_1 = 3.0287 \text{ Hz} \ge 1 \text{ Hz}$.

z ⁻	= 0.60 * <u>h</u>
	= 0.60 * 22.4625
	= 15.0000
l _z -	= <u>c</u> * (33 / z ⁻) ^{1/6}
	= 0.2000 * (33 / 15.0000) ^{1/6}
	= 0.2281
L ₇ -	= <u> </u> * (z ⁻ / 33) ^{ep}
_	= 500.0000 * (15.0000 / 33) ^{0.2000}
	= 427.0566
Q	$= \text{Sqr}(1 / (1 + 0.63 * ((\underline{b} + \underline{h}) / L_{z})^{0.63}))$
	= Sqr(1 / (1 + 0.63 * ((5.8854 + 22.4625) / 427.0566) ^{0.63}))
	= 0.9474
G	= 0.925 * (1 + 1.7 * g _e * l _z - * Q) / (1 + 1.7 * g _e * l _z -)
	= 0.925 * (1 + 1.7 * 3.40* 0.2281 * 0.9474) / (1 + 1.7 * 3.40 *
	0.2281) Quality
	= 0.8973

Table Lookup Values

α = 9.5000, Zg = 900.0000 '	[Table 6-2, page 78]
c = 0.2000, I = 500.0000, ep = 0.2000	[Table 6-2, page 78]
a ⁻ = 0.1538, b ⁻ = 0.6500	[Table 6-2, page 78]
g _Q = 3.40	[6.5.8.1 page 26]
$g_v = 3.40$	[6.5.8.1 page 26]

Seismic Code

Method of seismic analysis:	ASCE 7-05 ground supported
Site Class	С
Importance Factor:	l = 1.2500
Spectral Response Acceleration at short period (% g)	S _s = 20.38%
Spectral Response Acceleration at period of 1 sec (% g)	S ₁ = 8.74%
Response Modification Coeficient from Table 15.4-2	R = 2.0000
Acceleration based site co-efficient:	$F_{a} = 1.2000$
Velocity based site co-efficient:	$F_v = 1.7000$
Long-period transition period:	$T_{L} = 8.0000$
Redundancy factor:	$\rho = 1.0000$
User Defined Vertical Accelerations Considered:	No

12.4.2.3 Basic Load Combinations for Allowable Stress Design

The following load combinations are considered in accordance with ASCE section 2.4.1:

5. $D + P + P_s + 0.7E = (1.0 + 0.14S_{DS})D + P + P_s + 0.7\rho Q_E$ 8. $0.6D + P + P_s + 0.7E = (0.6 - 0.14S_{DS})D + P + P_s + 0.7\rho Q_E$ Where D = Dead load P = Internal or external pressure load $P_s = \text{Static head load}$ $E = \text{Seismic load} = E_h + - E_v = \rho Q_E + - 0.2S_{DS}D$

Vessel Characteristics

Vessel height: 22.4625 ft Vessel Weight: Operating, Corroded: 31,094 lb Empty, Corroded: 4,840 lb

Period of Vibration Calculation

Fundamental Period, T:

Operating, Corroded: 0.330 sec (f = 3.0 Hz) Empty, Corroded: 0.123 sec (f = 8.1 Hz)

The fundamental period of vibration T (above) is calculated using the Rayleigh method of approximation:

T = 2 * PI * Sqr({Sum($W_i * y_i^2$)} / {g * Sum($W_i * y_i$)}), where

 W_i is the weight of the ith lumped mass, and y_i is its deflection when the system is treated as a cantilever beam.

Seismic Shear Reports:

Operating, Corroded Empty, Corroded Base Shear Calculations

Seismic Shear Report: Operating, Corroded

Component	Elevation of bottom above base (in)	Elastic modulus E Inertia I (10 ⁶ psi) (ft ⁴)		Seismic shear at Bottom (Ibf)	Bending Moment at Bottom (Ibf-ft)		
Top Head	256	29.0	*	177	103		
Shell-02	180	29.0	1.0413	1,228	4,947		
Shell-01 (top)	62	29.0	1.0413	2,158	24,299		
Support Legs	0	29.0	0.0038	2,217	35,705		
Shell-01 (bottom)	62	29.0	1.0413	50	26		
Bottom Head	62	29.0	*	46	22		
*Moment of Inertia I varies over the length of the component							

Seismic Shear Report: Empty, Corroded

Component	Elevation of bottom above base (in)	Elastic modulus E (10 ⁶ psi)	Inertia I (ft ⁴)	Seismic shear at Bottom (Ibf)	Bending Moment at Bottom (Ibf-ft)			
Top Head	256	29.4	*	52	54			
Shell-02	180	29.4	1.0413	179	1,012			
Shell-01 (top)	62	29.4	1.0413	321	5,669			
Support Legs	0	29.0	0.0038	345	7,415			
Shell-01 (bottom)	62	29.4	1.0413	14	10			
Bottom Head	62	29.4	*	13	9			
*Moment of Inertia I varies over the length of the component								

11.4.3: Maximum considered earthquake spectral response acceleration

The maximum considered earthquake spectral response acceleration at short period, $S_{MS} = \underline{F}_{a} * \underline{S}_{o} = 1.2000 * 20.38 / 100 = 0.2446$ The maximum considered earthquake spectral response acceleration at 1 s period, $S_{M1} = \underline{F}_{v} * \underline{S}_{v} = 1.7000 * 8.74 / 100 = 0.1486$

11.4.4: Design spectral response acceleration parameters

Design earthquake spectral response acceleration at short period, $S_{DS} = 2/3 * S_{MS} = 2/3 * 0.2446 = 0.1630$ Design earthquake spectral response acceleration at 1 s period, $S_{D1} = S_{D1} = 2/3 * S_{M1} = 2/3 * 0.1486 = 0.0991$

12.4.2.3: Seismic Load Combinations: Vertical Term

Factor is applied to dead load.

Compressive Side:	= 1.0 + 0.14 * S _{DS}
	= 1.0 + 0.14 * 0.1630
	= 1.0228
Tensile Side:	= 0.6 - 0.14 * S _{DS}
	= 0.6 - 0.14 * 0.1630
	= 0.5772

Base Shear Calculations

Operating, Corroded Empty, Corroded

Base Shear Calculations: Operating, Corroded

Paragraph 15.4.4: Period Determination

Fundamental Period is taken from the Rayleigh method listed previously in this report.

T = 0.3302 sec.

12.8.1: Calculation of Seismic Response Coefficient

 C_s is the value computed below, bounded by C_s Min and C_s Max: C_s Min is 0.03; in addition, if $S_1 >= 0.6g$, C_s Min shall not be less than eqn 15.4-2. C_s Max calculated with 12.8-3 because (T = 0.3302) <= (T_L = 8.0000)

$$\begin{split} & C_{s} = \underline{S}_{DS} / (\underline{R} / \underline{I}) &= 0.1630 / (2.0000 / 1.2500) &= 0.1019 \\ & C_{s} Min &= 0.03 \\ & C_{s} Max &= \underline{S}_{D4} / (T * (\underline{R} / \underline{I})) &= 0.0991 / (0.3302 * (2.0000 / 1.2500)) &= 0.1875 \\ & C_{s} &= 0.1019 \end{split}$$

12.8.1: Calculation of Base Shear

 $V = C_s * \underline{W}$ = 0.1019 * 31094.2305 = 3,168.50 lb

12.4.2.1 Seismic Load Combinations: Horizontal Seismic Load Effect, E_h $Q_E = V$ $E_h = 0.7 * \rho * Q_E$ (Only 70% of seismic load considered as per Section 2.4.1) = 0.70 * 1.0000 * 3,168.50= 2,217.95 lb

Base Shear Calculations: Empty, Corroded

Paragraph 15.4.4: Period Determination

Fundamental Period is taken from the Rayleigh method listed previously in this report.

T = 0.1227 sec. Quality 12.8.1: Calculation of Seismic Response Coefficient

 $\rm C_s$ is the value computed below, bounded by $\rm C_sMin$ and $\rm C_sMax$: $\rm C_sMin$ is 0.03; in addition, if $\rm S_1>=$ 0.6g, $\rm C_sMin$ shall not be less than eqn 15.4-2. $\rm C_sMax$ calculated with 12.8-3 because (T = 0.1227) <= (T_L = 8.0000)

$$\begin{split} & C_{s} = \underbrace{S_{DS}}{(\underline{R} / \underline{I})} &= 0.1630 / (2.0000 / 1.2500) = 0.1019 \\ & C_{s} Min = 0.03 \\ & C_{s} Max = \underbrace{S_{D4}}{(\underline{R} / \underline{I})} &= 0.0991 / (0.1227 * (2.0000 / 1.2500)) = 0.5045 \\ & C_{s} = 0.1019 \end{split}$$

12.8.1: Calculation of Base Shear

V = C_s * <u>W</u> = 0.1019 * 4839.7158 = 493.17 lb

12.4.2.1 Seismic Load Combinations: Horizontal Seismic Load Effect, $E_h Q_E = V$ $E_h = 0.7 * \rho * Q_E$ (Only 70% of seismic load considered as per Section 2.4.1) = 0.70 * 1.0000 * 493.17= 345.22 lb

Top Head

ASME Section VIII, Division 1, 2010 Edition

Component: Material Specification: <u>Straight Flange</u> governs MDMT F&D Head SA-516 70 (II-D p.18, In. 19)

Internal design pressure: P = 55 psi @ 160 °F

Static liquid head:

P_= 0.6715 psi (SG=0.99, H_=18.7892" Operating head) P_{th} = 2.6825 psi (SG=1, H_s=74.3125" Horizontal test head) Corrosion allowance: Inner C = 0.125" Outer C = 0" Design MDMT = 10°F No impact test performed Rated MDMT = -55°F Material is not normalized Material is not produced to fine grain practice PWHT is not performed Do not Optimize MDMT / Find MAWP Radiography: Category A joints -Seamless No RT Head to shell seam -Spot UW-11(a)(5)(b) Type 1 new = 402.8 lb corr = 245.8 lb Estimated weight*: Capacity*: new = 131.3 US gal corr = 133.7 US gal * includes straight flange Inner diameter = 66" = 66" Crown radius L Knuckle radius r = 4.0625" = 0.3125" Minimum head thickness Straight flange length L_{sf} = 2" Nominal straight flange thickness $t_{sf} = 0.375"$ 2" Insulation thk*: density: 8 lb/ft³ weight: 45.8513 lb Insulation support ring spacing: 0" individual weight: 0 lb total weight: 0 lb * includes straight flange if applicable **Results Summary** The governing condition is internal pressure. = 0.0625" + 0.125" = 0.1875"

Minimum thickness per UG-16=0.0625" +Design thickness due to internal pressure (t)=0.2855"Maximum allowable working pressure (MAWP)=64.36 psiMaximum allowable pressure (MAP)=107.7 psi

M (Corroded)

 $M = \frac{1}{4} \left[3 + (L / r)^{\frac{1}{2}}\right] = \frac{1}{4} \left[3 + (66.125 / 4.1875)^{\frac{1}{2}}\right] = 1.743449$

M (New)

 $M=1/4^{*}[3 + (L / r)^{1/2}]=1/4^{*}[3 + (66 / 4.0625)^{1/2}]=1.757663$

Design thickness for internal pressure, (Corroded at 160 °F) Appendix 1-4(d)

- t = P*L*M / (2*S*E 0.2*P) + Corrosion
 - = 55.67*66.125*1.7434 / (2*20,000*1 0.2*55.67) + 0.125
 - = 0.2855"

The head internal pressure design thickness is 0.2855".

Maximum allowable working pressure, (Corroded at 160 °F) Appendix 1-4(d)

- $P = 2^*S^*E^*t / (L^*M + 0.2^*t) P_s$
 - = 2*20,000*1*0.1875 / (66.125*1.7434 + 0.2*0.1875) 0.67
 - = 64.36 psi

The maximum allowable working pressure (MAWP) is 64.36 psi.

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(d)

- $P = 2^*S^*E^*t / (L^*M + 0.2^*t) P_s$
 - = 2*20,000*1*0.3125 / (66*1.7577 + 0.2*0.3125) 0
 - = 107.7 psi

The maximum allowable pressure (MAP) is <u>107.7</u> psi.

% Extreme fiber elongation - UCS-79(d)

 $EFE = (75^{t} / R_{f})^{t} (1 - R_{f} / R_{o})$

- = (75*0.375 / 4.25)*(1 4.25 / ∞)
- = 6.6176%

The extreme fiber elongation exceeds 5 percent. Heat treatment per UCS-56 may be required. See UCS-79(d)(4) or (5).

Straight Flange on Top Head

ASME Section VIII Division 1, 2010 Edition

Componen Material s Material in Fig UCS-6 Rated MD UCS-66 g	Component:Straight FlangeMaterial specification:SA-516 70 (II-D p. 18, In. 19)Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 115.1 °F, (coincident ratio = 0.3824224)Rated MDMT is governed by UCS-66(b)(2)UCS-66 governing thickness = 0.3125 in								
Internal de	esign pressure:	P = 55 psi @ 160 °F							
Static liqu	uid head:								
P _s P _{th}	= 0.74 psi = 2.68 psi	$(SG = 0.99, H_s = 20.7892", Operating head (SG = 1, H_s = 74.3125")Horizontal test head)$	d) ,						
Corrosion	allowance	Inner C = 0.125"	Outer C = 0"						
Design MI Rated MD	Design MDMT = 10 °FNo impact test performedRated MDMT = -55 °FMaterial is not normalizedMaterial is not produced to Fine Grain PracticePWHT is not performed								
Radiograp	ohy: Lo Cir	ngitudinal joint - 'cumferential joint -	Seamless No RT Spot UW-11(a)(5)b Tyr	pe 1					
Estimated Capacity	l weight New = New =	44.3 lb corr = 29.6 29.62 US gal corr = 29.8	6 lb 35 US gal						
ID = Length L _c = t = Insulation	: 66" : 2" : 0.375" thk: 2"	density:	8 lb/ft ³	Weight:	0 lb				
Design th	ickness, (at 16	i0 °F) UG-27(c)(1)							
t = P*R / (S*E - 0.60*P) + Corrosion = 55.74*33.125 / (20,000*1.00 - 0.60*55.74) + 0.125 = 0.2175"									
Maximum	allowable wor	rking pressure, (at 160 $^\circ$	F) UG-27(c)(1)						
$P = S*E*t / (R + 0.60*t) - P_s$ = 20,000*1.00*0.25 / (33.125 + 0.60*0.25) - 0.74 = 149.52 psi									
Maximum	allowable pre	ssure, (at 70 °F) UG-27(c)(1)						
P =	S*E*t / (R + 0.	.60*t)							

= 20,000*1.00*0.3757(33 + 0.60*0.375)

= 225.73 psi Record

% Extreme fiber elongation - UCS-79(d)

 $\mathsf{EFE} = (50^* t / \mathsf{R}_{\mathsf{f}})^* (1 - \mathsf{R}_{\mathsf{f}} / \mathsf{R}_{\mathsf{o}})$

- = (50*0.375 / 33.1875)*(1 33.1875 / ∞)
- = 0.565%

The extreme fiber elongation does not exceed 5%.

Design thickness = 0.2175"

The governing condition is due to internal pressure.

The cylinder thickness of 0.375" is adequate.

Thickness Required Due to Pressure + External Loads

Condition	Pressure P (psi)	Allowab Before Stress Ir p:	le Stress UG-23 ncrease (si)	Temperature(°F)	Corrosion C (in)	Load	Req'd Thk Due to Tension (in)	Req'd Thk Due to Compression (in)
		St	Sc					. ,
Operating, Hot & Corroded	55	20,000	11,985	160	0.125	Wind	0.0446	0.0445
		-	-			Seismic	0.0446	0.0445
Operating, Hot & New	55	20,000	13,556	160	0	Wind	0.0444	0.0443
		-	-			Seismic	0.0444	0.0443
Hot Shut Down, Corroded	0	20,000	11,985	160	0.125	Wind	0	0.0001
						Seismic	0	0.0001
Hot Shut Down, New	0	20,000	13,556	160	0	Wind	0.0001	0.0002
						Seismic	0.0001	0.0002
Empty, Corroded	0	20,000	11,985	70	0.125	Wind	0	0.0001
		,	,			Seismic	0.0001	0.0001
Empty, New	0	20.000	13.556	70	0	Wind	0.0001	0.0002
F.97 -	-	20,000	. 0,000		°	Seismic	0.0001	0.0002
Hot Shut Down, Corroded, Weight & Eccentric Moments Only	0	20,000	11,985	160	0.125	Weight	0.0001	0.0001
Operating, Hot & Corroded, Vortex Shedding	55	20,000	11,985	160	0.125	Wind	0.0446	0.0445
Vacuum, Vortex Shedding	0	20,000	11,985	160	0.125	Wind	0	0.0002

Shell-02

ASME Section VIII Division 1, 2010 Edition

Component: Cylinder Material specification: SA-516 70 (II-D p. 18, In. 19) Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °F Fig UCS-66.1 MDMT reduction = 51.4 °F, (coincident ratio = 0.5341435) Rated MDMT is governed by UCS-66(b)(2) UCS-66 governing thickness = 0.3125 in Internal design pressure: P = 55 psi @ 160 °F Static liquid head: $(SG = 0.99, H_s =$ P_{s} = 3.46 psi 96.7892", Operating head) (SG = 1, H_s = 74.3125", P_{th} = 2.68 psi Horizontal test head) Corrosion allowance Inner C = 0.125"Outer C = 0" Design MDMT = 10 °F No impact test performed Rated MDMT = -55 °F Material is not normalized Material is not produced to Fine Grain Practice PWHT is not performed Radiography: Longitudinal joint -Spot UW-11(b) Type 1 Top circumferential joint -Spot UW-11(a)(5)b Type 1 Bottom circumferential joint - Spot UW-11(b) Type 1 Estimated weight New = 1,395.7 lb corr = 839 lb Capacity New = 1,125.59 US gal corr = 1,134.13 US gal ID 66" Length 76" = L_c = 0.3125" t Insulation thk: 2" density: 8 lb/ft³ Weight: 151.7 lb Design thickness, (at 160 °F) UG-27(c)(1) t = P*R / (S*E - 0.60*P) + Corrosion = 58.46*33.125 / (20,000*0.85 - 0.60*58.46) + 0.125 = 0.2392" Maximum allowable working pressure, (at 160 °F) UG-27(c)(1) Ρ = S*E*t / (R + 0.60*t) - P_s = 20,000*0.85*0.1875 / (33.125 + 0.60*0.1875) - 3.46 = 92.44 psi Maximum allowable pressure, (at 70 °F) UG-27(c)(1) Ρ = S*E*t / (R + 0.60*t)

 $= 20,000^{\circ}0.85^{\circ}0.3125/(33 + 0.60^{\circ}0.3125)$

```
= 160.08 psi Record
```

% Extreme fiber elongation - UCS-79(d)

 $EFE = (50^{*}t / R_{f})^{*}(1 - R_{f} / R_{o})$

- = (50*0.3125 / 33.1563)*(1 33.1563 / ∞)
- = 0.4713%

The extreme fiber elongation does not exceed 5%.

Design thickness = 0.2392"

The governing condition is due to internal pressure.

The cylinder thickness of 0.3125" is adequate.

Thickness Required Due to Pressure + External Loads

Condition	Pressure P (psi)	Allowab Before Stress Ir ps	le Stress UG-23 ncrease (si)	Temperature (°F)	Corrosion C (in)	Load	Req'd Thk Due to Tension (in)	Req'd Thk Due to Compression (in)
		St	Sc					. ,
Operating, Hot & Corroded	55	20,000	10,149	160	0.125	Wind	0.0451	0.0436
		-	-			Seismic	0.0453	0.0434
Operating, Hot & New	55	20,000	12,874	160	0	Wind	0.0449	0.0433
		-	-			Seismic	0.0451	0.0431
Hot Shut Down, Corroded	0	20,000	10,149	160	0.125	Wind	0.0005	0.0017
						Seismic	0.0006	0.002
Hot Shut Down, New	0	20,000	12,874	160	0	Wind	0.0004	0.0016
						Seismic	0.0006	0.0019
Empty, Corroded	0	20,000	10,149	70	0.125	Wind	0.0005	0.0017
		-	-			Seismic	0	0.0009
Empty, New	0	20,000	12,874	70	0	Wind	0.0004	0.0016
			,	-		Seismic	0.0001	0.001
Hot Shut Down, Corroded, Weight & Eccentric Moments Only	0	20,000	10,149	160	0.125	Weight	0.0006	0.0007
Operating, Hot & Corroded, Vortex Shedding	55	20,000	10,149	160	0.125	Wind	0.0454	0.0433
Vacuum, Vortex Shedding	0	20,000	10,149	160	0.125	Wind	0.0008	0.0022

Shell-01

ASME Section VIII Division 1, 2010 Edition

Component: Cylinder Material specification: SA-516 70 (II-D p. 18, In. 19) Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °F Fig UCS-66.1 MDMT reduction = 44.2 °F, (coincident ratio = 0.5715572) Rated MDMT is governed by UCS-66(b)(2) UCS-66 governing thickness = 0.3125 in Internal design pressure: P = 55 psi @ 160 °F Static liquid head: 7.68 (SG = 0.99, H_s = 214.7892",Operating P, psi head) $(SG = 1, H_s = 74.3125", Horizontal test$ 2.68 P_{th} psi head) Corrosion allowance Inner C = 0.125''Outer C = 0" Design MDMT = 10 °F No impact test performed Rated MDMT = -55 °F Material is not normalized Material is not produced to Fine Grain Practice PWHT is not performed Radiography: Longitudinal joint -Spot UW-11(b) Type 1 Top circumferential joint -Spot UW-11(b) Type 1 Bottom circumferential joint - Spot UW-11(a)(5)b Type 1 Estimated weight New = 2,128.2 lb corr = 1,279.4 lb New = 1,747.62 US gal corr = 1,760.89 US gal Capacity ID 66" Length 118" = L_c = 0.3125" t Insulation thk: 2" density: 8 lb/ft3 Weight: 235.6 lb Design thickness, (at 160 °F) UG-27(c)(1) t = P*R / (S*E - 0.60*P) + Corrosion = 62.68*33.125 / (20,000*0.85 - 0.60*62.68) + 0.125 = 0.2474" Maximum allowable working pressure, (at 160 °F) UG-27(c)(1) = S*E*t / (R + 0.60*t) - P_s Ρ = 20,000*0.85*0.1875 / (33.125 + 0.60*0.1875) - 7.68 = 88.22 psi Maximum allowable pressure, (at 70 °F) UG-27(c)(1) Ρ = S*E*t / (R + 0.60*t) = 20,000*0.85*0.3125 / (33 + 0.60*0.3125)= 160.08 psi Record

% Extreme fiber elongation - UCS-79(d)

$$\begin{split} \mathsf{EFE} &= (50^* \mathsf{t} \ / \ \mathsf{R}_{\mathsf{f}})^* (1 - \mathsf{R}_{\mathsf{f}} \ / \ \mathsf{R}_{\mathsf{o}}) \\ &= (50^* 0.3125 \ / \ 33.1563)^* (1 - 33.1563 \ / \ \infty) \\ &= 0.4713\% \end{split}$$

The extreme fiber elongation does not exceed 5%.

Design thickness = 0.2474"

The governing condition is due to internal pressure.

The cylinder thickness of 0.3125" is adequate.

Thickness Required Due to Pressure + External Loads

Condition	Pressure P (psi)	Allowable Stress Before UG-23 Stress Increase (psi)		Temperature (°F)	Corrosion C (in)	Location	Load	Req'd Thk Due to Tension (in)	Req'd Thk Due to Compression (in)
		St	Sc						
			10,149	160	0.125	Тор	Wind	0.0408	0.0339
Operating, Hot & Corroded	55	20,000					Seismic	0.041	0.0337
						Bottom	Wind	0.0433	0.0411
							Seismic	0.0434	0.041
						Тор	Wind	0.0405	0.0334
Operating, Hot & New	55	20,000	12,874	160	0		Seismic	0.0409	0.0331
						Bottom	Wind	0.0431	0.041
							Seismic	0.0432	0.0409
						Тор	Wind	0.0029	0.008
Hot Shut Down, Corroded	0	20,000	10,149	160	0.125		Seismic	0.0031	0.0084
						Bottom	Wind	0.0053	0.0032
							Seismic	0.0054	0.0031
Hot Shut Down, New		20,000	12,874	160	0	Тор	Wind	0.0027	0.0068
	0						Seismic	0.0031	0.0074
						Bottom	Wind	0.0053	0.0032
							Seismic	0.0054	0.0031
						Тор	Wind	0.0029	0.008
Empty, Corroded	0	20,000	10,149	70	0.125	•	Seismic	0.0004	0.0031
						Bottom	Wind	0.0001	0
							Seismic	0.0001	0
	0					Top	Wind	0.0027	0.0068
Empty, New		20,000	12,874	70	0		Seismic	0.0004	0.0032
						Bottom	Wind	0.0001	0.0001
							Seismic	0.0001	0.0001
Hot Shut Down, Corroded,	0	20,000	10,149	160	0.125	Тор	Weight	0.0009	0.0025
Weight & Eccentric Moments Only						Bottom	Weight	0.0064	0.0064
Operating, Hot & Corroded,	55	20:000	10,149	160	0.125	Тор	Wind	0.0411	0.0336
Vortex Shedding	Re	cord				Bottom	Wind	0.0433	0.0411

Vacuum, Vortex Shedding	0	20,000	10,149	160	0.125	Тор	Wind	0.0032	0.0085
						Bottom	Wind	0.0053	0.0032

Straight Flange on Bottom Head

ASME Section VIII Division 1, 2010 Edition

Component:Straight FlangeMaterial specification:SA-516 70 (II-D p. 18, In. 19)Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 88 °F, (coincident ratio = 0.4289964)Rated MDMT is governed by UCS-66(b)(2)UCS-66 governing thickness = 0.3125 in									
Internal des	ign pressure: P = 5	5 psi @ 160 °F							
Static liqui	d head:								
$P_s = {7.7 \atop psi} P_t = {2.6 \atop psi}$	$P_{s} = \begin{cases} 7.75 & (SG = 0.99, H_{s} = 216.7892", Operating \\ psi & head) \\ P_{th} = \begin{cases} 2.68 & (SG = 1, H_{s} = 74.3125", Horizontal test \\ psi & head) \end{cases}$								
Corrosion a	llowance I	nner C = 0.125"	Outer C = 0"						
Design MDI Rated MDN	Design MDMT = 10 °FNo impact test performedRated MDMT = -55 °FMaterial is not normalizedMaterial is not produced to Fine Grain PracticePWHT is not performed								
Radiograph	y: Longitud Circumf	linal joint - erential joint -	Seamless No RT Spot UW-11(a)(5)b Ty	/pe 1					
Estimated v Capacity	weight New = 44.3 New = 29.62	b corr = 29. 2 US gal corr = 29.	6 lb 85 US gal						
ID = Length L _c = t = Insulation th	66" 2" 0.375" nk: 2"	density:	8 lb/ft ³	Weight:	0 lb				
Design thic	ckness, (at 160 °F)	UG-27(c)(1)							
t = P*R / (S*E - 0.60*P) + Corrosion = 62.75*33.125 / (20,000*1.00 - 0.60*62.75) + 0.125 = 0.2292"									
Maximum allowable working pressure, (at 160 °F) UG-27(c)(1)									
P = = =	S*E*t / (R + 0.60*t) 20,000*1.00*0.25 / 142.52 psi	- P _s (33.125 + 0.60*0.25	i) - 7.75						
Maximum a	allowable pressure	e, (at 70 °F) UG-27(c)(1)						
P = = =	S*E*t / (R + 0.60*t) 20,000*1.00*0.375 225.73 psi	(133 + 0.60*0.375)							

% Extreme fiber elongation - UCS-79(d)

 $EFE = (50^{*}t / R_{f})^{*}(1 - R_{f} / R_{o})$

- = (50*0.375 / 33.1875)*(1 33.1875 / ∞)
- = 0.565%

The extreme fiber elongation does not exceed 5%.

Design thickness = 0.2292"

The governing condition is due to internal pressure.

The cylinder thickness of 0.375" is adequate.

Thickness Required Due to Pressure + External Loads

Condition	Pressure P (psi)	Allowable Stress Before UG-23 Stress Increase (psi)		Temperature (°F)	Corrosion C (in)	Load	Req'd Thk Due to Tension (in)	Req'd Thk Due to Compression (in)
		St	Sc					. ,
Operating, Hot & Corroded	55	20,000	11,985	160	0.125	Wind	0.0508	0.0483
		· ·	,			Seismic	0.051	0.0482
Operating, Hot & New	55	20,000	13,556	160	0	Wind	0.0507	0.0482
						Seismic	0.0508	0.048
Hot Shut Down, Corroded	0	20,000	11,985	160	0.125	Wind	0.0062	0.0037
						Seismic	0.0064	0.0036
Hot Shut Down, New	0	20,000	13,556	160	0	Wind	0.0062	0.0037
						Seismic	0.0063	0.0036
Empty, Corroded	0	20,000	11,985	70	0.125	Wind	0.0001	0
						Seismic	0.0001	0
Empty New	0	20,000	13,556	70	0	Wind	0.0001	0.0001
F.97 -						Seismic	0.0001	0.0001
Hot Shut Down, Corroded, Weight & Eccentric Moments Only	0	20,000	11,985	160	0.125	Weight	0.0074	0.0074
Operating, Hot & Corroded, Vortex Shedding	55	20,000	11,985	160	0.125	Wind	0.0508	0.0483
Vacuum, Vortex Shedding	0	20,000	11,985	160	0.125	Wind	0.0062	0.0037

Bottom Head

ASME Section VIII, Division 1, 2010 Edition

Component: Material Specification: <u>Straight Flange</u> governs MDMT F&D Head SA-516 70 (II-D p.18, In. 19)

Internal design pressure: P = 55 psi @ 160 °F

Static liquid head:

P_= 8.1533 psi (SG=0.99, H_=228.1523" Operating head) P_{th}= 2.6825 psi (SG=1, H_s=74.3125" Horizontal test head) Corrosion allowance: Inner C = 0.125" Outer C = 0" Design MDMT = 10°F No impact test performed Rated MDMT = -55°F Material is not normalized Material is not produced to fine grain practice PWHT is not performed Do not Optimize MDMT / Find MAWP Radiography: Category A joints -Seamless No RT Head to shell seam -Spot UW-11(a)(5)(b) Type 1 new = 403.2 lb corr = 246 lb Estimated weight*: Capacity*: new = 131.3 US gal corr = 133.7 US gal * includes straight flange Inner diameter = 66" = 66" Crown radius L Knuckle radius r = 4.0625" = 0.3125" Minimum head thickness Straight flange length L_{sf} = 2" Nominal straight flange thickness $t_{sf} = 0.375"$ 2" Insulation thk*: density: 8 lb/ft³ weight: 45.8513 lb Insulation support ring spacing: 0" individual weight: 0 lb total weight: 0 lb * includes straight flange if applicable **Results Summary** The governing condition is internal pressure.

Minimum thickness per UG-16=0.0625" + 0.125" = 0.1875"Design thickness due to internal pressure (t)=0.3071"Maximum allowable working pressure (MAWP)=56.88 psiMaximum allowable pressure (MAP)=107.7 psi

M (Corroded)

 $M = \frac{1}{4} \left[3 + (L / r)^{\frac{1}{2}}\right] = \frac{1}{4} \left[3 + (66.125 / 4.1875)^{\frac{1}{2}}\right] = 1.743449$

M (New)

 $M=1/4^{*}[3 + (L / r)^{1/2}]=1/4^{*}[3 + (66 / 4.0625)^{1/2}]=1.757663$

Design thickness for internal pressure, (Corroded at 160 °F) Appendix 1-4(d)

- t = P*L*M / (2*S*E 0.2*P) + Corrosion
 - = 63.15*66.125*1.7434 / (2*20,000*1 0.2*63.15) + 0.125
 - = 0.3071"

The head internal pressure design thickness is 0.3071".

Maximum allowable working pressure, (Corroded at 160 °F) Appendix 1-4(d)

- $P = 2^*S^*E^*t / (L^*M + 0.2^*t) P_s$
 - = 2*20,000*1*0.1875 / (66.125*1.7434 + 0.2*0.1875) 8.15
 - = 56.88 psi

The maximum allowable working pressure (MAWP) is 56.88 psi.

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(d)

- $P = 2^*S^*E^*t / (L^*M + 0.2^*t) P_s$
 - = 2*20,000*1*0.3125 / (66*1.7577 + 0.2*0.3125) 0
 - = 107.7 psi

The maximum allowable pressure (MAP) is <u>107.7</u> psi.

% Extreme fiber elongation - UCS-79(d)

 $EFE = (75^{t} / R_{f})^{t} (1 - R_{f} / R_{o})$

- = (75*0.375 / 4.25)*(1 4.25 / ∞)
- = 6.6176%

The extreme fiber elongation exceeds 5 percent. Heat treatment per UCS-56 may be required. See UCS-79(d)(4) or (5).

Support Legs

Leg material:			A36
Leg description:			6x6x1/2 Equal Angle
Number of leas:	N =	4	(Leg III)
Overall length:		78	in
Base to girth seam length:		62	in
Pad length:		18	in
Pad width:		11	in
Pad thickness:		0.3125	in
Bolt circle:		64.625	in
Anchor bolt size:		1	inch -8 UNC 2A bolt
Anchor bolt material:			A325
Anchor bolts/leg:		1	
Anchor bolt allowable stress:	S _b =	20,000	psi
Anchor bolt corrosion allowance:	5	0.125	in
Anchor bolt hole clearance:		0.25	in
Base plate width:		8	in
Base plate length:		8	in
Base plate thickness:		1	in (<u>0.8618</u> in required)
Base plate allowable stress:		24,000	psi
Foundation allowable bearing stress:		1,658	psi
Effective length coefficient:	K =	1.2	
Coefficient:	C _m =	0.85	
Leg yield stress:	$F_v =$	36,000	psi
Leg elastic modulus:	E´=	29,000,000	psi
Leg to pad fillet weld:		0.25	in (<u>0.069</u> in required)
Pad to shell fillet weld:		0.25	in (<u>0.0401</u> in required)
Legs braced:		No	

Note: The support attachment point is assumed to be 1 in up from the cylinder circumferential seam.

Conditions Investigated (Only Governing Condition Reported)

Wind operating corroded Wind operating new Wind empty corroded Wind empty new Seismic operating corroded Seismic operating new Seismic empty corroded Seismic empty new Vortex shedding operating corroded

Loading	Force attack angle °	Leg position °	Axial end load Ib _f	Shear resisted Ib _f	Axial f _a psi	Bending f _{bx} psi	Bending f _{by} psi	Ratio H ₁₋₁	Ratio H ₁₋₂
Governing		0	694.8	253.9	121	4,018	0	0.1517	0.1747
Condition	0	90	7,985.1	999.3	1,389	3,451	8,449	0.5220	0.5651
Wind		180	12,081.3	253.9	2,101	8,939	0	0.4808	0.4735
operating new		270	7,985.1	999.3	1,389	3,451	8,449	0.5220	0.5651
Moment =		0	694.8	626.6	121	6,788	3,746	0.3856	0.4490
22,956.0 lb _f -ft		90	694.8	626.6	121	6,788	3,746	0.3856	0.4490
	45	180	12,081.3	626.6	2,101	11,709	3,746	0.7293	0.7478
		270	<u>12,081.3</u>	626.6	<u>2,101</u>	<u>11,709</u>	<u>3,746</u>	0.7293	<u>0.7478</u>

Leg Calculations (AISC manual ninth edition)

Axial end load, P1 (Based on vessel total bending moment acting at leg attachment elevation)

 $P_1 = W_t / N + 48^*M_t / (N^*D)$ = 31,940.46 / 4 + 48*22,956 / (4*67.25) = <u>12,081.35</u> lb_f

Allowable axial compressive stress, F_a (AISC chapter E)

Local buckling check (AISC 5-99)

b / t = (6 / 0.5) < (76 / Sqr(36)) so $Q_s = 1$

Flexural-torsional buckling (AISC 5-317)

Shear center distance $w_0 = 2.0223$ $r_o^2 = w_o^2 + (I_z + I_w) / A$ = 2.0223² + (8.06 + 31.74) / 5.75 $= 11.01 \text{ in}^2$ Torsional constant J = 0.48 in⁴ Shear modulus G = 11,165 ksi $\begin{array}{l} \mathsf{F}_{\rm ej} = \mathrm{G^*J} \: / \: (\mathrm{A^*r_o^{\: 2}}) \\ = \: 11,165,000^{*}0.48 \: / \: (5.75^{*}11.0114) \end{array}$ = 85 ksi $K^{*}I / r_{w} = 1.2^{*}63.25 / 2.3493 = 32.3069$ $F_{ew} = \pi^{2*}E / (K^*I / r_w)^2$ $=\pi^{2*}29,000 / (32.3069)^{2}$ = 274 ksi $H = 1 - (w_0^2 / r_0^2)$ $= 1 - (2.0223^2 / 11.0114)$ = 0.6285853
$$\begin{split} &\mathsf{F}_{\mathsf{e}} = ((\mathsf{F}_{\mathsf{ew}} + \mathsf{F}_{\mathsf{ej}}) \: / \: (2^*\mathsf{H}))^* (1 \: - \: \mathsf{Sqr}(1 \: - \: (4^*\mathsf{F}_{\mathsf{ew}} ^*\mathsf{F}_{\mathsf{ej}} ^*\mathsf{H}) \: / \: (\mathsf{F}_{\mathsf{ew}} + \mathsf{F}_{\mathsf{ej}})^2)) \\ &= ((274 \: + \: 85) \: / \: (2^*0.6286))^* (1 \: - \: \mathsf{Sqr}(1 \: - \: (4^*274^*85^*0.6286) \: / \: (274 \: + \: 85)^2)) \end{split}$$
= 74 ksi Equivalent slenderness ratio $K^{*}I / r = \pi^{*}Sqr(E / F_{o})$ $= \pi^* \text{Sqr}(29,000 / 74)$ = 62.08502 $C_{c} = Sqr(2^{*}\pi^{2*}E / (F_{v}^{*}Q_{s}))$ $= \operatorname{Sqr}(2^{*}\pi^{2^{*}}29,000,000 / (36,000^{*}1))$

= 126.0993

K*l / r = 1.2*63.25 / 1.1841 = 64.0968

$$\begin{split} &\mathsf{F}_{a} = 1 \, \, ^{*} \, (1 - (\mathsf{K}^{*}\mathsf{I} \, / \, r)^{2} \, / \, (2^{*}\mathsf{C}_{c}^{\, 2}))^{*}\mathsf{F}_{y} \, / \, (5 \, / \, 3 \, + \, 3^{*}(\mathsf{K}^{*}\mathsf{I} \, / \, r) \, / \, (8^{*}\mathsf{C}_{c}) \cdot (\mathsf{K}^{*}\mathsf{I} \, / \, r)^{3} \, / \, (8^{*}\mathsf{C}_{c}^{\, 3})) \\ &= 1 \, \, ^{*} \, (1 - (64.0968)^{2} \, / \, (2^{*}126.0993^{2}))^{*}36,000 \, / \, (5 \, / \, 3 \, + \, 3^{*}(64.0968) \, / \, (8^{*}126.0993) \cdot (64.0968)^{3} \, / \, (8^{*}126.0993^{3})) \\ &= 17,030 \, \text{psi} \end{split}$$

Allowable axial compression and bending (AISC chapter H)

Note: r is divided by 1.35 - See AISC 6.1.4, pg. 5-314 $F'_{ex} = 1*12*\pi^{2*}E / (23*(K*1/r)^2)$

= $1*12*\pi^{2*}29,000,000 / (23*(86.5307)^2)$ = 19,944 psi F'_{ey} = $1*12*\pi^{2*}E / (23*(K*I / r)^2)$ = $1*12*\pi^{2*}29,000,000 / (23*(43.6144)^2)$ = 78,504 psi F_b = $1*0.66*F_y$ = 1*0.66*36,000= 23,760 psi

Compressive axial stress

 $f_{a} = P_{1} / A$ = 12,081.35 / 5.75 = 2.101 psi

Bending stresses

 $\begin{aligned} &f_{bx} = F^* cos(\alpha)^* L \ / \ (I_x \ / \ C_x) + P_1^* E_{cc} \ / \ (I_x \ / \ C_x) \\ &= 626.56^* abs(cos(135))^* 63.25 \ / \ (8.0627 \ / \ 1.8667) + 12,081.35^* 1.8667 \ / \ (8.0627 \ / \ 1.8667) \\ &= \underline{11.709} \ psi \end{aligned}$

 $\begin{array}{l} f_{by} = F^* sin(\alpha)^* L \ / \ (I_y \ / \ C_y) \\ = 626.56^* sin(135)^* 63.25 \ / \ (31.74 \ / \ 4.24) \\ = \underline{3.746} \ psi \end{array}$

AISC equation H₁₋₁

 $\begin{aligned} &H_{1-1} = f_a / F_a + C_{mx} * f_{bx} / \left((1 - f_a / F_{ex}) * F_{bx} \right) + C_{my} * f_{by} / \left((1 - f_a / F_{ey}) * F_{by} \right) \\ &= 2,101 / 17,030 + 0.85 * 11,709 / \left((1 - 2,101 / 19,944) * 23,760 \right) + 0.85 * 3,746 / \left((1 - 2,101 / 78,504) * 23,760 \right) \\ &= \underline{0.7293} \end{aligned}$

AISC equation H₁₋₂

 $\begin{aligned} &H_{1-2} = f_a \,/\, (0.6^{\star}1^{\star}F_y) + f_{bx} \,/\, F_{bx} + f_{by} \,/\, F_{by} \\ &= 2,101 \,/\, (0.6^{\star}1^{\star}36,000) + 11,709 \,/\, 23,760 + 3,746 \,/\, 23,760 \\ &= \underline{0.7478} \end{aligned}$

4, 6x6x1/2 Equal Angle legs are adequate.

Anchor bolts - Wind empty corroded condition governs

Tensile loading per leg (1 bolt per leg)

R = 48*M / (N*BC) - 0.6*W / N = 48*35,908.3 / (4*64.625) - 0.6*4,839.72 / 4 = 5,941.74 lb_f

Required area per bolt

A_b = R / (S_b*n) = 5,941.74 / (20,000*1) = 0.2971 in²

Area of a 1 inch -8 UNC 2A bolt bolt (corroded) = 0.3101 in² 1 inch -8 UNC 2A bolt bolts are satisfactory.

Check the leg to pad fillet weld, Bednar 10.3, Seismic operating new governs

Note: continuous welding is assumed for all support leg fillet welds.

The following leg attachment weld analysis assumes the fillet weld is present on three sides (leg top closure plate is used).

 $Z_{w} = (2^{*}b^{*}d + d^{2}) / 3$ = (2*8.4853*14.75 + 14.75²) / 3 = 155.9596 in² $J_w = (b + 2^*d)^3 / 12 - d^{2*}(b + d)^2 / (b + 2^*d)$ $= (8.4853 + 2^{*}14.75)^{3} / 12 - 14.75^{2*}(8.4853 + 14.75)^{2} / (8.4853 + 2^{*}14.75)$ = 1,475.1801 in³ $E = d^2 / (b + 2^* d)$ $= 14.75^2 / (8.4853 + 2*14.75)$ = 5.727545 in Governing weld load $f_x = Cos(45)*581.16 = 410.94 \text{ lb}_f$ Governing weld load $f_v = Sin(45)*581.16 = 410.94 \text{ lb}_f$ $f_1 = P_1 / L_{weld}$ = 12,696.17 / 37.9853 = 334.24 lb_f/in (V, direct shear) $f_2 = f_v^* L_{leg}^* 0.5^* b / J_w$ = 410.94*63.25*0.5*8.4853 / 1,475.1801 = $74.75 \text{ lb}_{f}/\text{in}$ (V, torsion shear) $f_3 = f_y / L_{weld}$ = 410.94 / 37.9853 = 10.82 lb_f/in (V_c direct shear) f₄ = f_y*L_{leg}*E / J_w = 410.94*63.25*5.7275 / 1,475.1801 = $100.92 \text{ lb}_{f}/\text{in}$ (V torsion shear) $= 318.62 \text{ lb}_{f}/\text{in}$ (M bending) $f_6 = f_x / L_{weld}$ = 410.94 / 37.9853 = 10.82 lb_f/in (Direct outward radial shear) $f = Sqr((f_1 + f_2)^2 + (f_3 + f_4)^2 + (f_5 + f_6)^2)$ $= \operatorname{Sqr}((334.24 + 74.75)^2 + (10.82 + 100.92)^2 + (318.62 + 10.82)^2)$ = 536.93 lb_f/in (Resultant shear load) Required leg to pad fillet weld leg size (welded both sides + top) t_w = f / (0.707*0.55*S₂) = 536.93 / (0.707*0.55*20,000) = <u>0.069</u> in

The 0.25 in leg to pad attachment fillet weld size is adequate.

Check the pad to vessel fillet weld, Bednar 10.3, Seismic operating new governs

 $Z_{w} = b^{*}d + d^{2}/3$ = 11*18 + 18² / 3 $= 306 \text{ in}^2$ $J_w = (b + d)^3 / 6$ $=(11 + 18)^3 / 6$ = 4,064.8333 in³ $f_1 = P_1 \ / \ L_{weld}$ = 12,696.17 / 58 = 218.9 lb_f/in (V, direct shear) $f_2 = f_y^* L_{leg}^* 0.5^* b \ / \ J_w \\ = 410.94^* 63.25^* 0.5^* 11 \ / \ 4,064.8333$ $= 35.17 \text{ lb}_{f}/\text{in}$ (V, torsion shear) $f_3 = f_y / L_{weld}$ = 410.94 / 58 = $7.09 \text{ lb}_{f}/\text{in}$ (V direct shear) $\begin{array}{l} {{f_4} = {f_y}^{*}{L_{{\text{leg}}}}^{*}0.5^{*}d \; / \; {J_w}} \\ {= 410.94^{*}63.25^{*}0.5^{*}18 \; / \; 4,064.8333} \end{array}$ $= 57.55 \text{ lb}_{f}/\text{in}$ (V torsion shear) = $162.39 \text{ lb}_{f}/\text{in}$ (M, bending) $f_6 = f_x / L_{weld}$ = 410.94 / 58 = 7.09 lb_f/in (Direct outward radial shear) $f = Sqr((f_1 + f_2)^2 + (f_3 + f_4)^2 + (f_5 + f_6)^2)$ $= Sqr((218.9 + 35.17)^{2} + (7.09 + 57.55)^{2} + (162.39 + 7.09)^{2})$ = 312.17 lb_f/in (Resultant shear load)

Required pad to vessel fillet weld leg size (welded all around the pad edge)

 $\begin{array}{l} t_w = f \; / \; (0.707^* 0.55^* S_a) \\ = \; 312.17 \; / \; (0.707^* 0.55^* 20,000) \\ = \; \underline{0.0401} \; \text{in} \end{array}$

0.25 in pad to vessel attachment fillet weld size is adequate.

Base plate thickness check, AISC 3-106

f_p = P / (B*N) = 15,272.17 / (8*8) = 239 psi

Required base plate thickness is the largest of the following: (0.8618 in)

$$\begin{split} t_b &= Sqr(0.5^*P \ / \ S_b) \\ &= Sqr(0.5^*15,272.17 \ / \ 24,000) \\ &= 0.5641 \ in \\ t_b &= 0.5^*(N-d)^*Sqr(3^*f_p \ / \ S_b) \\ &= 0.5^*(8-6)^*Sqr(3^*239 \ / \ 24,000) \end{split}$$

= 0.1727 in

The base plate thickness is adequate.

Check the leg to vessel attachment stresses, WRC-107 (Wind operating corroded governs)

Applied Loads

Radial load:	$P_r =$	-443.04	lb _f
Circumferential moment:	$\dot{M_c} =$	0	lb _f -in
Circumferential shear:	$V_{c} =$	0	lb _f
Longitudinal moment:	$M_1 =$	49,874.09	lb _f -in
Longitudinal shear:	$V_{L}^{-} =$	11,705.96	lb _f
Torsion moment:	$M_{t} =$	0	lb _f -in
Internal pressure:	P =	64.557	psi
Mean shell radius:	$R_m =$	33.2813	in
Local shell thickness:	t =	0.1875	in
Shell yield stress:	S _y =	35,500	psi

Maximum stresses due to the applied loads at the pad edge (includes pressure)

R_m / t = 33.2813 / 0.1875 = 177.5

 $C_1 = 5.5, C_2 = 14.2866$ in

Local circumferential pressure stress = P*R_i / t =11,427 psi

Local longitudinal pressure stress = $P^*R_i / (2^*t) = 5,714 \text{ psi}$

Maximum combined stress (P_L+P_b+Q) = 22,459 psi Allowable combined stress (P_L+P_b+Q) = +-3*S = +-60,000 psi

The maximum combined stress $(P_1 + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress (P_L) = 15,143 psi Allowable local primary membrane (P_L) = +-1.5*S = +-30,000 psi

	Stresses at the pad edge per WRC Bulletin 107									
Figure	value	β	A _u	A	B _u	B	C _u	Cı	Du	D
3C*	1.9355	0.3712	0	0	0	0	137	137	137	137
4C*	10.2157	0.31	725	725	725	725	0	0	0	0
1C	0.06	0.2401	0	0	0	0	4,537	-4,537	4,537	-4,537
2C-1	0.0083	0.2401	628	-628	628	-628	0	0	0	0
3A*	4.2162	0.2272	0	0	0	0	0	0	0	0
1A	0.0495	0.2412	0	0	0	0	0	0	0	0
3B*	5.4586	0.3123	-2,991	-2,991	2,991	2,991	0	0	0	0
1B-1	0.0067	0.2562	-6,688	6,688	6,688	-6,688	0	0	0	0
Pressure s	tress*		11,427	11,427	11,427	11,427	11,427	11,427	11,427	11,427
Total circu	mferential	stress	3,101	15,221	22,459	7,827	16,101	7,027	16,101	7,027
Primary membrane circumferential stress*		9,161	9,161	15,143	15,143	11,564	11,564	11,564	11,564	
3C*	2.6781	0.31	190	190	190	190	0	0	0	0
4C*	7.7866	0.3712	0	0	0	0	553	553	553	553
1C-1	0.014	0.3209	1,059	-1,059	1,059	-1,059	0	0	0	0
2C	0.03	0.3209	0	0	0	0	2,268	-2,268	2,268	-2,268
4A*	14.8033	0.2272	0	0	0	0	0	0	0	0
2A	0.0188	0.2891	0	0	0	0	0	0	0	0
4B*	2.658	0.3123	-2,548	-2,548	2,548	2,548	0	0	0	0
2B-1	0.0098	0.3151	-7,954	7,954	7,954	-7,954	0	0	0	0
Pressure s	tress*		5,714	5,714	5,714	5,714	5,714	5,714	5,714	5,714
Total longit	tudinal stre	ess	-3,539	10,251	17,465	-561	8,535	3,999	8,535	3,999
Primary membrane longitudinal stress*			3,356	3,356	8,452	8,452	6,267	6,267	6,267	6,267
Shear from	Mt		0	0	0	0	0	0	0	0
Circ shear	from V _c		0	0	0	0	0	0	0	0
Long shear	r from VL	uality	0	0	0	0	-1,092	-1,092	1,092	1,092
Total Shear	r stress	ecord	0	0	0	0	-1,092	-1,092	1,092	1,092

The maximum local primary membrane stress (P,) is within allowable limits.

Combined stress (P _L +P _b +Q)	-6,640	15,221	22,459	-8,388	16,255	7,380	16,255	7,380
---	--------	--------	--------	--------	--------	-------	--------	-------

Note: * denotes primary stress.

Maximum stresses due to the applied loads at the leg edge (includes pressure)

R_m / t = 33.2813 / 0.5 = 66.5625

 $C_1 = 4.2427, C_2 = 11.7071$ in

Local circumferential pressure stress = P*R_i / t =11,427 psi

Local longitudinal pressure stress = $P^*R_i / (2^*t) = 5,714 \text{ psi}$

Maximum combined stress (P_L+P_b+Q) = 15,886 psi Allowable combined stress (P_L+P_b+Q) = +-3*S = +-60,000 psi

The maximum combined stress $(P_1 + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress (P_L) = 12,880 psi Allowable local primary membrane (P_L) = +-1.5*S = +-30,000 psi

	St	resses	at the	leg ec	lge pe	r WRC	Bullet	in 107		
Figure	value	β	A _u	A	B _u	B	C _u	CI	D _u	D
3C*	2.528	0.2982	0	0	0	0	67	67	67	67
4C*	7.2401	0.2478	193	193	193	193	0	0	0	0
1C	0.0672	0.1902	0	0	0	0	715	-715	715	-715
2C-1	0.0281	0.1902	299	-299	299	-299	0	0	0	0
3A*	2.6006	0.1788	0	0	0	0	0	0	0	0
1A	0.066	0.2052	0	0	0	0	0	0	0	0
3B*	4.7809	0.2508	-1,260	-1,260	1,260	1,260	0	0	0	0
1B-1	0.0167	0.2219	-2,707	2,707	2,707	-2,707	0	0	0	0
Pressure s	tress*		11,427	11,427	11,427	11,427	11,427	11,427	11,427	11,427
Total circumferential stress		7,952	12,768	15,886	9,874	12,209	10,779	12,209	10,779	
Primary me circumfere	embrane ntial stress	S*	10,360	10,360	12,880	12,880	11,494	11,494	11,494	11,494
3C*	3.338	0.2478	89	89	89	89	0	0	0	0
4C*	6.199	0.2982	0	0	0	0	165	165	165	165
1C-1	0.0363	0.2568	386	-386	386	-386	0	0	0	0
2C	0.0317	0.2568	0	0	0	0	337	-337	337	-337
4A*	5.5073	0.1788	0	0	0	0	0	0	0	0
2A	0.0251	0.2579	0	0	0	0	0	0	0	0
4B*	2.3594	0.2508	-985	-985	985	985	0	0	0	0
2B-1	0.021	0.2807	-2,691	2,691	2,691	-2,691	0	0	0	0
Pressure s	tress*		5,714	5,714	5,714	5,714	5,714	5,714	5,714	5,714
Total longitudinal stress		2,513	7,123	9,865	3,711	6,216	5,542	6,216	5,542	
Primary membrane longitudinal stress*		4,818	4,818	6,788	6,788	5,879	5,879	5,879	5,879	
Shear from	Mt	uality	0	0	0	0	0	0	0	0
Circ shear	from V _c	ecord	0	0	0	0	0	0	0	0

The maximum local primary membrane stress (P₁) is within allowable limits.

Long shear from V_L	0	0	0	0	-500	-500	500	500
Total Shear stress	0	0	0	0	-500	-500	500	500
Combined stress (PL+Pb+Q)	7,952	12,768	15,886	9,874	12,250	10,826	12,250	10,826

Note: * denotes primary stress.

Liquid Level

Location from datum

216.7892"

Operating Liquid Specific Gravity0.99Test liquid specific gravity1

Pump Suction (A)

ASME Section VIII Division 1, 2010 Edition

 $\begin{array}{ll} t_{w(lower)} = & 0.3125 \text{ in} \\ Leg_{41} = & 0.3125 \text{ in} \end{array}$

Note: round inside edges per UG-76(c)

Located on:	Bottom Head
Liquid static head included:	8.4811 psi
Nozzle material specification:	SA-106 B Smls pipe (II-D p. 10, ln. 40)
Nozzle longitudinal joint efficiency:	1
Nozzle description:	NPS 8 Sch 40 (Std)
Flange description:	8 inch Class 150 WN A105
Bolt Material:	SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, In. 32)
Flange rated MDMT:	-55°F
(UCS-66(b)(3): Coincident ratio = 0.2293811)	
(Flange rated MDMT = -155 °F Bolts rated MDMT per Fig UCS-66 note (c) = -55 °F)	
Liquid static head on flange:	8.4922 psi
ASME B16.5 flange rating MAWP:	270 psi @ 160°F
ASME B16.5 flange rating MAP:	285 psi @ 70 ° F
ASME B16.5 flange hydro test:	450 psi @ 70°F
Gasket Description:	Flexitallic Spiral Wound CG 304 S.S.
PWHT performed:	No
Circumferential joint radiography:	None UW-11(c) Type 1
Nozzle orientation:	0°
Calculated as hillside:	No
Local vessel minimum thickness:	0.3125 in
End of nozzle to datum line:	-20.8476 in
Nozzle inside diameter, new:	7.981 in
Nozzle nominal wall thickness:	0.322 in
Nozzle corrosion allowance:	0 in
Projection available outside vessel, Lpr:	5.4375 in
Projection available outside vessel to flange face, Lf:	9.4375 in
Distance to head center, R	0 in

UG	UG-37 Area Calculation Summary (in ²) For P = 65.36 psi @ 160 °F The opening is adequately reinforced							UG-45 Nozzle Wall Thickness Summary (in) The nozzle passes UG-45	
A required	A A A A A A A A A A A A A A A A A A A							t _{min}	
0.8728	0.9557	0.2331	0.2818						

UG-41 Weld Failure Path Analysis Summary						
The nozzle is exempt from weld strength calculations per UW-15(b)(1)						

UW-16 Weld Sizing Summary								
Weld description Required weld throat size (in) Actual weld throat size (in) Status								
Nozzle to shell fillet (Leg ₄₁)	0.1312	0.2188	weld size is adequate					

Reinforcement Calculations for MAP

UG-37 Area Calculation Summary (in ²) For P = 107.7 psi @ 70 °F The opening is adequately reinforced								UG-45 Nozzle Wall Thickness Summary (in) The nozzle passes UG-45	
A A A A1 A2 A3 A5 A welds						t _{req}	t _{min}		
1.4355 1.5425 1.0625 0.3965 0.0835								0.2818	

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary							
Weld description Required weld throat size (in) Actual weld throat size (in) Status							
Nozzle to shell fillet (Leg ₄₁)	0.2188	0.2188	weld size is adequate				

Inlet (B)

ASME Section VIII Division 1, 2010 Edition

Note: round inside edges per UG-76(c)

Located on: Liquid static head included: Nozzle material specification: Nozzle longitudinal joint efficiency: 1 Nozzle description: Pad material specification: Pad diameter: Flange description: **Bolt Material:** Flange rated MDMT: (UCS-66(b)(3): Coincident ratio = 0.2230053)(Flange rated MDMT = -155 °F Bolts rated MDMT per Fig UCS-66 note (c) = -55 °F) Liquid static head on flange: ASME B16.5 flange rating MAWP: ASME B16.5 flange rating MAP: ASME B16.5 flange hydro test: Gasket Description: PWHT performed: No Circumferential joint radiography: Nozzle orientation: Local vessel minimum thickness: Nozzle center line offset to datum line: End of nozzle to shell center: Nozzle inside diameter, new: Nozzle nominal wall thickness: Nozzle corrosion allowance 0 in Projection available outside vessel, Lpr:

Shell-01 6.8177 psi SA-106 B Smls pipe (II-D p. 10, ln. 40) 1 NPS 8 Sch 40 (Std) SA-516 70 (II-D p. 18, ln. 19) 14.625 in 8 inch Class 150 WN A105 SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32) -55°F

6.6751 psi 270 psi @ 160 °F 285 psi @ 70 °F 450 psi @ 70 °F Flexitallic Spiral Wound CG 304 S.S. No None UW-11(c) Type 1 180 ° 0.3125 in 30 in 41.3125 in 7.981 in 0.322 in 0 in 4 in

Projection available outside vessel to flange face, Lf:	8 in
Pad is split:	No

UG-37 Area Calculation Summary (in ²) For P = 63.7 psi @ 160 °F The opening is adequately reinforced						UG-45 W Thick Summ The nozz UG	Nozzle all aness ary (in) e passes -45	
A A A A_1 A_2 A_3 A_5 A welds					t _{req}	t _{min}		
0.8535	2.4792	0.6452	0.2462		1.5	0.0878	0.2307	0.2818

UG-41 Weld Failure Path Analysis Summary (Ib _f) All failure paths are stronger than the applicable weld loads							
Weld load Weld load Path 1-1 Weld load Path 2-2 Weld load Path 3-3 W W1-1 strength W2-2 strength W3-3 strength					Path 3-3 strength		
5,066.05	36,680	92,482.24	8,040.82	116,103.98	38,744.82	79,808.73	

UW-16 Weld Sizing Summary						
Weld description Required weld size (in) Actual weld size (in) Status						
Nozzle to pad fillet (Leg ₄₁)	0.175	0.175	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	0.0937	0.1312	weld size is adequate			
Nozzle to pad groove (Upper)	0.175	0.25	weld size is adequate			

Reinforcement Calculations for MAP

UG-37 Area Calculation Summary (in ²) For P = 107.7 psi @ 70 °F The opening is adequately reinforced						UG-45 W Thick Summ The nozz	Nozzle all (ness ary (in) le passes -45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
1.4394	3.0439	1.0588	0.3965		1.5	0.0886	0.1783	0.2818

UG-41 Weld Failure Path Analysis Summary (Ib _f) All failure paths are stronger than the applicable weld loads							
Weld load W Weld load W ₁₋₁ Path 1-1 strength Weld load W ₂₋₂ Path 2-2 strength Weld load W ₃₋₃ Path 3- strength					Path 3-3 strength		
9,090.59	39,702	92,482.24	12,439.38	141,168	43,143.38	104,872.75	

UW-16 Weld Sizing Summary							
Weld description Required weld size (in) Actual weld size (in) Status							
Nozzle to pad fillet (Leg ₄₁)	0.175	0.175	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	0.125	0.1312	weld size is adequate				

Nozzle to pad groove (Upper)	0.175	0.25	weld size is adequate
------------------------------	-------	------	-----------------------

 $\begin{array}{ll} t_{w(lower)} = & 0.3125 \text{ in} \\ Leg_{41} = & 0.3125 \text{ in} \end{array}$

Note: round inside edges per UG-76(c)

Located on:	Top Head
Liquid static head included:	0.2699 psi
Nozzle material specification:	SA-106 B Smls pipe (II-D p. 10, ln. 40)
Nozzle longitudinal joint efficiency:	1
Nozzle description:	NPS 8 Sch 40 (Std)
Flange description:	8 inch Class 150 WN A105
Bolt Material:	SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, In. 32)
Flange rated MDMT:	-55°F
(UCS-66(b)(3): Coincident ratio = 0.1995839)	
(Flange rated MDMT = -155 °F Bolts rated MDMT per Fig UCS-66 note (c) = -55 °F)	
Liquid static head on flange:	0 psi
ASME B16.5 flange rating MAWP:	270 psi @ 160°F
ASME B16.5 flange rating MAP:	285 psi @ 70 ° F
ASME B16.5 flange hydro test:	450 psi @ 70 ° F
Gasket Description:	Flexitallic Spiral Wound CG 304 S.S.
PWHT performed:	No
Circumferential joint radiography:	None UW-11(c) Type 1
Nozzle orientation:	0°
Calculated as hillside:	No
Local vessel minimum thickness:	0.3125 in
End of nozzle to datum line:	217.562 in
Nozzle inside diameter, new:	7.981 in
Nozzle nominal wall thickness:	0.322 in
Nozzle corrosion allowance:	0 in
Projection available outside vessel, Lpr:	4.1519 in
Projection available outside vessel to flange face, Lf:	8.1519 in
Distance to head center, Record	0 in

UG	UG-37 Area Calculation Summary (in ²) For P = 57.15 psi @ 160 °F The opening is adequately reinforced						UG-45 Wi Thick Summa The nozzi UG	Nozzle all aness ary (in) le passes -45
A required	A A A A1 A2 A3 A5 A welds						t _{req}	t _{min}
0.7631	1.0644	0.7335	0.2474			0.0835	0.2195	0.2818

UG-41 Weld Failure Path Analysis Summary					
The nozzle is exempt from weld strength calculations per UW-15(b)(1)					

UW-16 Weld Sizing Summary						
Weld description	Required weld Actual we throat size (in)		Status			
Nozzle to shell fillet (Leg ₄₁)	0.1312	0.2188	weld size is adequate			

Reinforcement Calculations for MAP

UG	UG-45 W Thick Summ The nozzl UG	Nozzle all aness ary (in) e passes -45						
A required	A available	A ₁	A ₂	A ₃	A 5	A welds	t _{req}	t _{min}
1.4355	1.5425	1.0625	0.3965			0.0835	0.1778	0.2818

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status					
Nozzle to shell fillet (Leg ₄₁)	0.2188	0.2188	weld size is adequate					

Makeup Inlet (D)

ASME Section VIII Division 1, 2010 Edition

Note: round inside edges per UG-76(c)

Located on: Shell-02 Liquid static head included: Nozzle material specification: Nozzle longitudinal joint efficiency: 1 Nozzle description: Pad material specification: Pad diameter: Flange description: **Bolt Material:** Flange rated MDMT: -55°F (UCS-66(b)(3): Coincident ratio = 0.2033194)(Flange rated MDMT = -155 °F Bolts rated MDMT per Fig UCS-66 note (c) = -55 °F) Liquid static head on flange: ASME B16.5 flange rating MAWP: ASME B16.5 flange rating MAP: ASME B16.5 flange hydro test: Gasket Description: PWHT performed: No Circumferential joint radiography: Nozzle orientation: 135° Local vessel minimum thickness: 0.3125 in Nozzle center line offset to datum line: 187 in End of nozzle to shell center: Nozzle inside diameter, new: 6.065 in Nozzle nominal wall thickness: 0.28 in Nozzle corrosion allowance 0 in Projection available outside vessel, Lpr: 4.5 in

1.1729 psi SA-106 B Smls pipe (II-D p. 10, ln. 40) 1 NPS 6 Sch 40 (Std) SA-516 70 (II-D p. 18, ln. 19) 12.625 in 6 inch Class 150 WN A105 SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)

1.0646 psi 270 psi @ 160 °F 285 psi @ 70 °F 450 psi @ 70 °F Flexitallic Spiral Wound CG 304 S.S. No None UW-11(c) Type 1 135 ° 0.3125 in 187 in 41.3125 in 6.065 in 0.28 in 0 in 4.5 in

Pad is split:	No
Projection available outside vessel to flange face, Lf:	8 in
Internal projection, h _{new} :	3 in

	UG-45 I Wa Thick Summa The nozzle UG-	Nozzle all ness ary (in) e passes 45						
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
0.592	2.2978	0.5456	0.2162	0.1027	1.3763	0.057	0.2213	0.245

UG-41 Weld Failure Path Analysis Summary (Ib _f) All failure paths are stronger than the applicable weld loads									
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength			
1,801.18	32,901	69,844.42	9,313.64	95,409.63	36,838.64	71,546.44			

UW-16 Weld Sizing Summary								
Weld description	Required weld size (in)	Actual weld size (in)	Status					
Nozzle to pad fillet (Leg ₄₁)	0.175	0.175	weld size is adequate					
Pad to shell fillet (Leg ₄₂)	0.0937	0.1312	weld size is adequate					
Nozzle to pad groove (Upper)	0.175	0.25	weld size is adequate					

Reinforcement Calculations for MAP

	UG-45 I Wa Thick Summa The nozzle UG-	Nozzle III ness iry (in) passes 45						
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
1.0957	2.9698	0.8032	0.3484	0.3352	1.3763	0.1068	0.1783	0.245

UG-41 Weld Failure Path Analysis Summary (Ib _f) All failure paths are stronger than the applicable weld loads									
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength			
7,135.05	35,561	69,844.42	18,799.7	130,232.47	46,324.7	106,369.27			

UW-16 Weld Sizing Summary								
Weld description	Required weld size (in)	Actual weld size (in)	Status					
Nozzle to pad fillet (Leg ₄₁)	0.175	0.175	weld size is adequate					

Pad to shell fillet (Leg ₄₂)	0.125	0.1312	weld size is adequate
Nozzle to pad groove (Upper)	0.175	0.25	weld size is adequate

Level Glass (K1)

ASME Section VIII Division 1, 2010 Edition

Note: round inside edges per UG-76(c)

Located on: Shell-01 Liquid static head included: 7.4602 psi Nozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40) Nozzle longitudinal joint efficiency: 1 Nozzle description: NPS 2 Sch 80 (XS) Flange description: 2 inch Class 150 WN A105 Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, In. 32) Flange rated MDMT: -55°F (UCS-66(b)(3): Coincident ratio = 0.2256387) (Flange rated MDMT = -155 °F Bolts rated MDMT per Fig UCS-66 note (c) = $-55 \circ F$) Liquid static head on flange: 7.4256 psi ASME B16.5 flange rating MAWP: 270 psi@ 160°F 285 psi@ 70°F ASME B16.5 flange rating MAP: ASME B16.5 flange hydro test: 450 psi @ 70°F Gasket Description: Flexitallic Spiral Wound CG 304 S.S. PWHT performed: No Circumferential joint radiography: None UW-11(c) Type 1 90° Nozzle orientation: Local vessel minimum thickness: 0.3125 in Nozzle center line offset to datum line: 9 in End of nozzle to shell center: 41.3125 in Nozzle inside diameter, new: 1.939 in Nozzle nominal wall thickness: 0.218 in Nozzle corrosion allowance: 0 in Projection available outside vessel, Lpr: 5.5 in Projection available outside vessel to flange face, Lf: 8 in

UG-37 Area Calculation Summary (in ²) For P = 64.34 psi @ 160 °F							UG-45 Wa Thick Summa The nozzl UG	Nozzle all aness ary (in) e passes -45
A required	A available	A 1	A ₂	A ₃	A 5	A welds	t _{req}	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)							0.1348	0.1908

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status					
Nozzle to shell fillet (Leg ₄₁)	0.1312	0.175	weld size is adequate					

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

UG-37 Area Calculation Summary (in ²) For P = 107.7 psi @ 70 °F						mary	UG-45 W Thick Summ The nozz UG	Nozzle all aness ary (in) e passes -45
A required	A available	A 1	A ₂	A ₃	A 5	A welds	t _{req}	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)							0.1348	0.1908

UG-41 Weld Failure Path Analysis Summary
The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary							
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status				
Nozzle to shell fillet (Leg ₄₁)	0.1526	0.175	weld size is adequate				

This opening does not require reinforcement per UG-36(c)(3)(a)

Level Glass (K2)

ASME Section VIII Division 1, 2010 Edition

Note: round inside edges per UG-76(c)

Located on: Shell-02 Liquid static head included: 1.0992 psi Nozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40) Nozzle longitudinal joint efficiency: 1 Nozzle description: NPS 2 Sch 80 (XS) Flange description: 2 inch Class 150 WN A105 Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, In. 32) Flange rated MDMT: -55°F (UCS-66(b)(3): Coincident ratio = 0.2033194)(Flange rated MDMT = -155 °F Bolts rated MDMT per Fig UCS-66 note (c) = $-55 \circ F$) Liquid static head on flange: 1.0646 psi ASME B16.5 flange rating MAWP: 270 psi@ 160°F 285 psi@ 70°F ASME B16.5 flange rating MAP: ASME B16.5 flange hydro test: 450 psi @ 70°F Gasket Description: Flexitallic Spiral Wound CG 304 S.S. PWHT performed: No Circumferential joint radiography: None UW-11(c) Type 1 90° Nozzle orientation: Local vessel minimum thickness: 0.3125 in Nozzle center line offset to datum line: 187 in End of nozzle to shell center: 41.3125 in Nozzle inside diameter, new: 1.939 in Nozzle nominal wall thickness: 0.218 in Nozzle corrosion allowance: 0 in Projection available outside vessel, Lpr: 5.5 in Projection available outside vessel to flange face, Lf: 8 in

UG-37 Area Calculation Summary (in ²) For P = 57.98 psi @ 160 °F						mary	UG-45 Nozzle Wall Thickness Summary (in) The nozzle passes UG-45	
A required	A available	A 1	A ₂	A ₃	A 5	A welds	t _{req}	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)						0.1348	0.1908	

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary							
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status				
Nozzle to shell fillet (Leg ₄₁)	0.1312	0.175	weld size is adequate				

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

UG-37 Area Calculation Summary (in ²) For P = 107.7 psi @ 70 °F						mary	UG-45 W Thick Summ The nozz UG	Nozzle all aness ary (in) e passes -45
A required	A available	A 1	A ₂	A ₃	A 5	A welds	t _{req}	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)							0.1348	0.1908

UG-41 Weld Failure Path Analysis Summary
The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary							
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status				
Nozzle to shell fillet (Leg ₄₁)	0.1526	0.175	weld size is adequate				

This opening does not require reinforcement per UG-36(c)(3)(a)

Level (L2)

ASME Section VIII Division 1, 2010 Edition

Note: round inside edges per UG-76(c)

Located on: Shell-02 Liquid static head included: 1.0914 psi Nozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40) Nozzle longitudinal joint efficiency: 1 Nozzle description: NPS 1.5 Sch 80 (XS) Flange description: 1.5 inch Class 150 WN A105 Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, In. 32) Flange rated MDMT: -55°F (UCS-66(b)(3): Coincident ratio = 0.2033194)(Flange rated MDMT = -155 °F Bolts rated MDMT per Fig UCS-66 note (c) = $-55 \circ F$) Liquid static head on flange: 1.0646 psi ASME B16.5 flange rating MAWP: 270 psi@ 160°F ASME B16.5 flange rating MAP: 285 psi@ 70°F ASME B16.5 flange hydro test: 450 psi @ 70°F Gasket Description: Flexitallic Spiral Wound CG 304 S.S. PWHT performed: No Circumferential joint radiography: None UW-11(c) Type 1 270° Nozzle orientation: Local vessel minimum thickness: 0.3125 in Nozzle center line offset to datum line: 187 in End of nozzle to shell center: 41.3125 in Nozzle inside diameter, new: 1.5 in Nozzle nominal wall thickness: 0.2 in Nozzle corrosion allowance: 0 in Projection available outside vessel, Lpr: 5.56 in Projection available outside vessel to flange face, Lf: 8 in

UG-37 Area Calculation Summary (in ²) For P = 57.97 psi @ 160 °F						mary	UG-45 I Wa Thick Summa The nozzle UG-	Nozzle III ness nry (in) passes 45
A required	A available	A ₁	A ₂	2 A ₃ A ₅ A welds			t _{req}	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)						0.1269	0.175	

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary							
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status				
Nozzle to shell fillet (Leg ₄₁)	0.1312	0.175	weld size is adequate				

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

UG-37 Area Calculation Summary (in ²) For P = 107.7 psi @ 70 °F						mary	UG-45 I Wa Thick Summa The nozzle UG-	Nozzle all ness nry (in) passes 45
A A A A1 A2 A3 A5 A welds					A welds	t _{req}	t _{min}	
This nozzle is exempt from area calculations per UG-36(c)(3)(a)							0.1269	0.175

UG-41 Weld Failure Path Analysis Summary
The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary									
Weld description Required weld throat size (in) Actual weld throat size (in) Status									
Nozzle to shell fillet (Leg ₄₁)	0.14	0.175	weld size is adequate						

This opening does not require reinforcement per UG-36(c)(3)(a)

Level (L1)

ASME Section VIII Division 1, 2010 Edition

Note: round inside edges per UG-76(c)

Located on: Shell-01 Liquid static head included: 7.4524 psi Nozzle material specification: SA-106 B Smls pipe (II-D p. 10, ln. 40) Nozzle longitudinal joint efficiency: 1 Nozzle description: NPS 1.5 Sch 80 (XS) Flange description: 1.5 inch Class 150 WN A105 Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, In. 32) Flange rated MDMT: -55°F (UCS-66(b)(3): Coincident ratio = 0.2256387) (Flange rated MDMT = -155 °F Bolts rated MDMT per Fig UCS-66 note (c) = $-55 \circ F$) Liquid static head on flange: 7.4256 psi ASME B16.5 flange rating MAWP: 270 psi@ 160°F 285 psi@ 70°F ASME B16.5 flange rating MAP: ASME B16.5 flange hydro test: 450 psi @ 70°F Gasket Description: Flexitallic Spiral Wound CG 304 S.S. PWHT performed: No Circumferential joint radiography: None UW-11(c) Type 1 270° Nozzle orientation: Local vessel minimum thickness: 0.3125 in Nozzle center line offset to datum line: 9 in End of nozzle to shell center: 41.3125 in Nozzle inside diameter, new: 1.5 in Nozzle nominal wall thickness: 0.2 in Nozzle corrosion allowance: 0 in Projection available outside vessel, Lpr: 5.56 in Projection available outside vessel to flange face, Lf: 8 in

UG-37	Area Ca For P = 64	mary	UG-45 Nozzle Wall Thickness Summary (in) The nozzle passes UG-45					
A required	A available	A ₁	A ₂	A ₃	A 5	A welds	t _{req}	t _{min}
This no calculat	zzle is ex tions per	0.1269	0.175					

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary									
Weld description Required weld throat size (in) Actual weld throat size (in) Status									
Nozzle to shell fillet (Leg ₄₁)	0.1312	0.175	weld size is adequate						

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

UG-37	For P = 1	mary	UG-45 Nozzle Wall Thickness Summary (in) The nozzle passes UG-45					
A required	A available	A ₁	A ₂	A ₃	A 5	A welds	t _{req}	t _{min}
This no calculat	zzle is ex tions per	0.1269	0.175					

UG-41 Weld Failure Path Analysis Summary
The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary									
Weld description Required weld throat size (in) Actual weld throat size (in) Status									
Nozzle to shell fillet (Leg ₄₁)	0.14	0.175	weld size is adequate						

This opening does not require reinforcement per UG-36(c)(3)(a)

Manway (M)

ASME Section VIII Division 1, 2010 Edition

Note: round inside edges per UG-76(c)

Located on: Liquid static head included: Nozzle material specification: Nozzle longitudinal joint efficiency: Pad material specification: Pad diameter: Flange description: Bolt Material: Flange rated MDMT: (UCS-66(b)(3): Coincident ratio = 0.2231309) (Flange rated MDMT = -155 °F Bolts rated MDMT per Fig UCS-66 note (c) = -55 °F) Liquid static head on flange: ASME B16.5 flange rating MAWP: ASME B16.5 flange rating MAP: ASME B16.5 flange hydro test: Gasket Description: Flange external fillet weld leg (UW-21): Flange internal fillet weld leg (UW-21): PWHT performed: Nozzle orientation: Local vessel minimum thickness: Nozzle center line offset to datum line: End of nozzle to shell center: Nozzle inside diameter, new: Nozzle nominal wall thickness: Nozzle corrosion allowance Projection available outside vessel, Lpr:

Shell-01 7.1263 psi SA-516 70 (II-D p. 18, In. 19) 1 SA-516 70 (II-D p. 18, In. 19) 32 in 24 inch Class 150 SO A105 SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, In. 32) -55°F

6.7109 psi 270 psi@ 160°F 285 psi @ 70°F 450 psi @ 70°F Flexitallic Spiral Wound CG 304 S.S. 0.5625 in (0.525 in min) 0.375 in (0.25 in min) No 0° 0.3125 in 29 in 41.3125 in 23.25 in 0.375 in 0 in 7.625 in

Projection available outside vessel to flange face, Lf: 8 in Pad is split: No

Reinforcement Calculations for Internal Pressure

Appen	UG-45 Nozzle Wall Thickness Summary (in) The nozzle passes UG-45							
P _L (psi)	S _{allow} (psi)	A ₁ (in²)	A ₂ (in ²)	A ₃ (in ²)	A ₅ (in²)	A welds (in ²)	t _{req} (in)	t _{min} (in)
18,681	30,000	0.0703	0.2312	0.375				

	Division 2 Part 4.5 Strength of Nozzle Attachment Welds Summary Average Shear Stress in Weld											
ky	L _τ (in)	L _{τp} (in)	L _{41T} (in)	L _{42T} (in)	L _{43T} (in)	f _{welds} (Ib _f)	τ ₁ (psi)	τ ₂ (psi)	τ ₃ (psi)	τ (psi)	S (psi)	Over stressed
1.0323	18.8496	25.1327	0.2652	0.1768	0	20,430.8	3,315	2,102	6,458	6,458	20,000	No

Division 2 Part 4.5 Strength of Nozzle Attachment Welds Summary Average Shear Stress in Nozzle Wall									
ت _n (psi)	1.5*S _n (psi)	Over stressed							
11,926	30,000	No							

UW-16 Weld Sizing Summary									
Weld description	Required weld size (in)	Actual weld size (in)	Status						
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.0937	0.175	weld size is adequate						
Nozzle to pad groove (Upper)	0.2625	0.375	weld size is adequate						

% Extreme fiber elongation - UCS-79(d)

 $EFE = (50*t / R_f)*(1 - R_f / R_o)$ = (50*0.375 / 11.8125)*(1 - 11.8125 / \infty) = 1.5873%

The extreme fiber elongation does not exceed 5%.

Reinforcement Calculations for MAP

PL (psi)	S _{allow} (psi)	A ₁ (in²)	A ₂ (in ²)	A ₃ (in²)	A ₅ (in²)	A welds (in²)	t _{req} (in)	t _{min} (in)
23,098	30,000	1.267	0.7279		1.1719	0.0703	0.1783	0.375

	Division 2 Part 4.5 Strength of Nozzle Attachment Welds Summary Average Shear Stress in Weld											
ky	L _τ (in)	L _{τp} (in)	L _{41T} (in)	L _{42T} (in)	L _{43T} (in)	f _{welds} (Ib _f)	τ ₁ (psi)	τ ₂ (psi)	τ ₃ (psi)	τ (psi)	S (psi)	Over stressed
1.0323	18.8496	25.1327	0.2652	0.1768	0	21,837.05	2,899	1,838	5,648	5,648	20,000	No

Division 2 Part 4.5 Strength of Nozzle Attachment Welds Summary Average Shear Stress in Nozzle Wall							
τ _n 1.5 [*] S _n Over (psi) (psi) stressed							
14,114	30,000	No					

UW-16 Weld Sizing Summary						
Weld description Required weld size (in) Actual weld size (in) Status						
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	0.1562	0.175	weld size is adequate			
Nozzle to pad groove (Upper)	0.2625	0.375	weld size is adequate			

Nitrogen Inlet (N)

ASME Section VIII Division 1, 2010 Edition

Note: round inside edges per UG-76(c)

Located on: Top Head Liquid static head included: 0.4752 psi SA-106 B Smls pipe (II-D p. 10, In. 40) Nozzle material specification: Nozzle longitudinal joint efficiency: 1 Nozzle description: NPS 2 Sch 80 (XS) Flange description: 2 inch Class 150 WN A105 SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, In. 32) **Bolt Material:** -55°F Flange rated MDMT: (UCS-66(b)(3): Coincident ratio = 0.2001443)(Flange rated MDMT = -155 °F Bolts rated MDMT per Fig UCS-66 note (c) = $-55 \circ F$) Liquid static head on flange: 0.1597 psi 270 psi@160°F ASME B16.5 flange rating MAWP: ASME B16.5 flange rating MAP: 285 psi @ 70°F ASME B16.5 flange hydro test: 450 psi @ 70°F Gasket Description: Flexitallic Spiral Wound CG 304 S.S. PWHT performed: No Circumferential joint radiography: None UW-11(c) Type 1 135° Nozzle orientation: Calculated as hillside: Yes Local vessel minimum thickness: 0.3125 in End of nozzle to datum line: 212.3204 in Nozzle inside diameter, new: 1.939 in Nozzle nominal wall thickness: 0.218 in Nozzle corrosion allowance: 0 in Opening chord length: 2.1239 in Projection available outside vessel, Lpr: 5.5 in Projection available outside vessel to flange face, Lf: 8 in

Distance to head center, R: Reinforcement Calculations for Internal Pressure 27 in

UG-37 Area Calculation Summary (in ²) For P = 57.36 psi @ 160 °F						UG-45 W Thick Summ The nozz UG	Nozzle all aness ary (in) le passes -45	
A required	A A A A A A A A A A A A A A A A A A A						t _{req}	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)						0.1348	0.1908	

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2) $% \left(\frac{1}{2}\right) =0$

UW-16 Weld Sizing Summary						
Weld description Required weld throat size (in) Actual weld throat size (in) Status						
Nozzle to shell fillet (Leg ₄₁)	0.1312	0.175	weld size is adequate			

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary						
Weld description Required weld throat size (in) Actual weld throat size (in) Status						
Nozzle to shell fillet (Leg ₄₁)	0.1526	0.175	weld size is adequate			

Quality

This opening does not require reinforcement per UG-36(c)(3)(a)

Recirc Inlet (R)

ASME Section VIII Division 1, 2010 Edition

Note: round inside edges per UG-76(c)

Located on: Shell-02 Liquid static head included: 1.441 psi Nozzle material specification: Nozzle longitudinal joint efficiency: 1 Nozzle description: Flange description: Bolt Material: Flange rated MDMT: -55°F (UCS-66(b)(3): Coincident ratio = 0.2044478)(Flange rated MDMT = -155 °F Bolts rated MDMT per Fig UCS-66 note (c) = $-55 \circ F$) Liquid static head on flange: 1.3862 psi ASME B16.5 flange rating MAWP: ASME B16.5 flange rating MAP: ASME B16.5 flange hydro test: Gasket Description: PWHT performed: No Circumferential joint radiography: 180° Nozzle orientation: Local vessel minimum thickness: 0.3125 in Nozzle center line offset to datum line: 178 in End of nozzle to shell center: 41.3125 in Nozzle inside diameter, new: 3.068 in Nozzle nominal wall thickness: 0.216 in Nozzle corrosion allowance: 0 in 5.25 in Projection available outside vessel, Lpr: Projection available outside vessel to flange face, Lf: 8 in

Shell-02 1.441 psi SA-106 B Smls pipe (II-D p. 10, In. 40) 1 NPS 3 Sch 40 (Std) 3 inch Class 150 WN A105 SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, In. 32) -55°F

1.3862 psi 270 psi @ 160°F 285 psi @ 70°F 450 psi @ 70°F Flexitallic Spiral Wound CG 304 S.S. No None UW-11(c) Type 1 180° 0.3125 in 178 in 41.3125 in 3.068 in 0.216 in 0 in 5.25 in

UG-37 Area Calculation Summary (in ²) For P = 58.32 psi @ 160 °F							UG-45 Nozzle Wall Thickness Summary (in) The nozzle passes UG-45	
A A A A A A A A A A A A A A A A A A A							t _{req}	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)						0.189	0.189	

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2) $% \left(\frac{1}{2}\right) =0$

UW-16 Weld Sizing Summary						
Weld description Required weld throat size (in) Actual weld throat size (in) Status						
Nozzle to shell fillet (Leg ₄₁)	0.1312	0.175	weld size is adequate			

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAP

UG-41 Weld Failure Path Analysis Summary					
The nozzle is exempt from weld strength calculations per UW-15(b)(2)					

UW-16 Weld Sizing Summary						
Weld description Required weld throat size (in) Actual weld throat size (in) Status						
Nozzle to shell fillet (Leg ₄₁)	0.1512	0.175	weld size is adequate			

This opening does not require reinforcement per UG-36(c)(3)(a)
Lifting Lug

Minimum report

Geometry Inputs

Attached To	Shell-02
Material	A36
Distance of Lift Point From Datum	206"
Angular Position	90.00° and 270.00°
Length of Lug, L	10"
Width of Lug, B	5"
Thickness of Lug, t	0.5"
Hole Diameter, d	1.875"
Pin Diameter, Dp	1"
Lug Diameter at Pin, D	5"
Weld Size, t _w	0.25"
Weld Length, L ₃	5"
Load Angle from Vertical, ϕ	0.0000 °
Has Brace Plate	No

Intermediate Values

Load Factor	1.5000
Vessel Weight (new, incl. Load Factor), W	9127 lb
Lug Weight (new), W _{lug}	23 lb (Qty=2)
Distance from Center of Gravity to Top Lug, I ₁	128.6311"
Distance from Center of Gravity to Tail Lug, I_2	69.1189"
Distance from Vessel Center Line to Tail Lug, I_3	36.125"
Allowable Stress, Tensile, σ_t	19980 psi
Allowable Stress, Shear, σ_s	13320 psi

Allowable Stress, Bearing, σ_p	29970 psi
Allowable Stress, Bending, σ_{b}	22201 psi
Allowable Stress, Weld Shear, $\tau_{\text{allowable}}$	13320 psi
Allowable Stress set to 1/3 Sy per ASME B30.20	No

Summary Values

Required Lift Pin Diameter, d _{reqd}	<u>0.467"</u>
Required Lug Thickness, t _{reqd}	<u>0.1523"</u>
Lug Stress Ratio, σ _{ratio}	<u>0.37</u>
Weld Shear Stress Ratio, τ_{ratio}	<u>0.39</u>
Lug Design	Acceptable
Local Stresses	Acceptable
Maximum Out of Plane Lift Angle - Weak Axis Bending	5.79°

COMPRESS recommends a spreader beam be used to prevent weak axis bending of the top lugs. No consideration is given for any bracing plate from the lug to the vessel.

Tailing Lug

Minimum report

Geometry Inputs

Attached To	Shell-01
Material	A36
Orientation	Longitudinal
Distance of Lift Point From Datum	8.25"
Angular Position	180.00°
Length of Lug, L	10"
Height of Lug, H	5"
Thickness of Lug, t	0.5"
Hole Diameter, d	1.875"
Pin Diameter, Dp	1"
Load Eccentricity, a ₁	0"
Distance from Load to Shell or Pad, a_2	2.5"
Weld Size, t _w	0.25"
Width of Pad, B _p	3"
Length of Pad, L _p	11"
Pad Thickness, t _p	0.3125"
Pad Weld Size, t _{wp}	0.25"
Load Angle Normal to Vessel, β	0.0000 °
Load Angle from Vertical, ϕ	-90.0000 °

Intermediate Values

Load Factor	1.5000
Vessel Weight (new, incl. Load Factor), W	9127 lb
Lug Weight (new), W _{lug}	10 lb
Distance from Center of Gravity to Top Lug, I ₁	128.6311"

Distance from Center of Gravity to Tail Lug, I_2	69.1189"
Distance from Vessel Center Line to Tail Lug, I_3	36.125"
Allowable Stress, Tensile, σ_t	19980 psi
Allowable Stress, Shear, σ_s	13320 psi
Allowable Stress, Bearing, σ_p	29970 psi
Allowable Stress, Bending, σ_{b}	22201 psi
Allowable Stress, Weld Shear, $\tau_{allowable}$	13320 psi
Allowable Stress set to 1/3 Sy per ASME B30.20	No

Summary Values

Required Lift Pin Diameter, d _{reqd}	<u>0.5327"</u>
Required Lug Thickness, t _{reqd}	<u>0.1981"</u>
Lug Stress Ratio, σ_{ratio}	0.08
Weld Shear Stress Ratio, τ_{ratio}	0.18
Lug Design	Acceptable
Local Stresses	Acceptable

