Separators for the Dairy Industry

Operating Instructions

USING THE ALLEN-BRADLEY PROGRAMMABLE LOGIC CONTROLLER

This publication contains procedures for the modification of certain events in the operating program of the dairy separators listed below:

MSD 90-01-076 MSD 130-01-076 MSD 170-01-076 MSD 200-01-076 MSD 250-01-076 MSD 300-01-777

For future reference it is recommended that the user record pertinent information concerning the separating system. Ensure the following is complete. This information will assist with the ordering of replacement parts and will be requested during any inquires to the factory.

Application \qquad
Purchaser. \qquad
Purchaser P. O. Number. \qquad
Installation Location \qquad
Centrico Project No. \qquad
Year of Construction \qquad
Equipment Assembly No. \qquad
Separator Model \& Serial No \qquad

Technical Manual No.
9139-9015-001
Manual Issue Date \& Revision.

EEPROM No.

Oct. 15, 1991-Rev. 1 Jan. 10, 1994-Rev. 2

004 this manual and the separator manual before attempting operation or maintenance.

THIS MANUAL SHALL BE CONSIDERED A PERMANENT PART OF THE SEPARATOR SYSTEM. SHOULD THIS EQUIPMENT BE TRANSFERRED TO NEW OWNERSHIP, THIS MANUAL (AND ALL TECHNICAL DOCUMENTATION) SHOULD ACCOMPANY THE TRANSFER.
FOREWORD
Introduction I
Applicability I
CHAPTER 1 - DESCRIPTION OF THE CONTROL COMPONENTS
.....................Introduction. 1-1
1-1Components 1-1
1-2Purpose and Function 1-1
1-3Control Cabinet 1-2
1-4...............TCAT 1-6
1-5Programmable Controller 1-8
1-6Expansion Unit 1-9
1-7Speed Indicator 1-11
1-8Speed Measuring Device 1-11
1-9Illuminated Graphics Panel 1-12
CHAPTER 2 - OPERATION
Introduction 2-1
2-1 Controls and Indicators 2-1
2-2Initial Procedures 2-1
2-3Starter Cabinet. 2-2
2-4Energizing the System 2-2
2-5Energizing the Timing Unit (Run/Auto Mode) 2-4
2-6Starting the Process (All products) 2-4
2-7Processing Milk 2-5
2-8Processing Whey 2-5
2-9Monitoring a Timer Instruction 2-8
2-10Monitoring a Counter Instruction 2-9
2-11..............Modifying a Timer Instruction 2-10
2-12..............Modifying a Counter Instruction 2-11
2-13Typical C.I.P. Cleaning and Shut-down 2-18
2-14.............Troubleshooting TCAT Displays 2-20
2-14.1Energizing the Timing Unit (Run/Man Mode) 2-20
2-14.2Energizing the Timing Unit (In a Mode Other Than Run) 2-20
2-14.3Energizing the Timing Unit (Without a User Program) 2-20
2-15Malfunctions Indicated on Illuminated Graphics Panel 2-23
2-16Adjusting Speed Indicator 2-23
CHAPTER 3 - WIRING SCHEMATICS
Introduction 3-1

LIST OF TABLES

F-1................Dairy Separators II
2-1Water \& Air Pressure Requirements 2-1
2-2Function Times (Separation/Standardization of Milk) 2-12
2-3Function Times (Separation/Clarification of Whey) 2-13
2-4De-sludging Times for MSD \& Water Saving Machines 2-14
2-5De-sludging Times for Non-Water Saving Machines 2-16
2-6TCAT Error Codes 2-21
2-7TCAT Display Instruction Symbols 2-22
3-1Bill of Material (Wiring Diagram 9128-5900-114) 3-9
LIST OF ILLUSTRATIONS
1-1Sequence of Events (Typical) 1-2
1-2Control Cabinet (Sheet 1 of 3) 1-3
1-3TCAT 1-6
1-4................TCAT Keypad 1-7
1-5SLC 150 Programmable Controller 1-8
1-6SLC 100 Relay Output Expansion Unit 1-10
1-7EU Address Block Numbering 1-10
1-8Speed Indicator 1-11
1-9Speed Measuring Device 1-11
1-10Illuminated Graphics Panel 1-12
2-1Starter Controls for MSD 300 Machines 2-3
2-2Starter Controls for MSD 90, 130, 170, 200, 250 Machines. 2-3
2-3TCAT Display in Run/Auto Mode During Start-up 2-4
2-4Control Cabinet, Separator Controls. 2-7
2-5Monitoring a Timer Instruction 2-8
2-6................Monitoring a Counter Instruction 2-9
2-7Modifying a Timer Instruction 2-10
2-8Modifying a Counter Instruction 2-11
2-9Separator Controls (Partial) 2-19
2-10TCAT Display in Run/Man. Mode During Start-up 2-20
2-11TCAT Display in a Mode Other Than Run 2-20
2-12TCAT Display Without a Program in Memory 2-20
2-13Illuminated Graphics Panel (Malfunction Indications) 2-23
2-14 Speed Indicator (Adjustment) 2-24
3-1Wiring Diagram No. 9128-5900-114 (Sheet 1 of 3) 3-3
APPENDIX
Glossary of Terms and Abbreviations A-3
Symbols A-5
Conversion Factors A-9

FOREWORD

INTRODUCTION.

This manual is published as a guide to the start-up and operation of dairy industry separators. The procedures outlined here are not dedicated to one particular separator, they are however, applicable to the major components and operating characteristics of a number of similar separators. Any operating procedures or machine characteristics peculiar to just one or two models that have an effect on the general operation instructions provided will be noted as such throughout the text of this publication.

APPLICABILITY.

The machines addressed in this manual are as follows:

- MSD 300-01-777
- MSD 250-01-076
- MSD 200-01-076
- MSD 170-01-076
- MSD 130-01-076
- MSD 90-01-076

In addition to the models listed above, accessory packages are available to suit individual requirements. It is recommended that the user become familiar with the operation of the basic machine as well as any components that were ordered.

CAUTION:

The intended use of this publication is to assist the user in the operation of the separator models listed. It is not furnished as a substitute for the technical instructions supplied by the manufacturer of the separator. Read and understand the manufacturer supplied material before attempting operation or maintenance.

Refer to Table F-1 for a brief description of the machines and option packages covered in this manual. Note the similarities shared by most models. The major difference between these machines is the capacity of product they are capable of processing. The largest capacity machine, the MSD 300, is a belt driven separator with a water cooled motor. The other separators are driven through a heavy-duty gear drive and fluid clutch.
TABLE F-1.
DAIRY SEPARATORS

SEPARATOR MODEL NO.	FUNCTION	APPLICATION	SPECIFICATIONS (PARTIAL LIST)	OPTIONAL ACCESSORY GROUP PACKAGE PART NO.	
MSD 300-01-777	Separation of milk or whey into skim milk and cream which are discharged under pressure. Sediment is ejected from the bowl at pre-determined intervals while the bowl is rotating at full speed.	Separation, clarification and standardization of milk; separation of whey. Minimum temp. is $77^{\circ} \mathrm{F} ; 59^{\circ} \mathrm{F}$ for clarification.	Bowl speed- 4800 RPM Total bowl volume- 15.8 gal. Sediment holding space- 3.32 gal. Capacities: Separation of milk/whey9247 gal./hr Clarification \& standardization of milkup to $11889 \mathrm{gal} . / \mathrm{hr}$	Set B Set C Set C1 Set F	$\begin{aligned} & 9140-5700-728 \\ & 9140-5700-729 \\ & 9140-5700-729 \\ & 9140-5700-730 \end{aligned}$
MSD 250-01-076	Separation of milk or whey into heavy and light phases under pressure. Sediment is ejected from the bowl at pre-determined intervals while the bowl is rotating at full speed.	Separation, clarification and standardization of milk; separation of whey, minimum temp. is $77^{\circ} \mathrm{F}$.	Bowl speed- 4700 RPM Total bowl volume- 15.8 gal. Sediment holding space- 3.17 gal. Capacities: Separation of milk/whey7926 gal./hr Clarification \& standardization of milkup to 9247 gal./hr.	Set B Set C Set C1 Set F	$\begin{aligned} & 9140-5700-731 \\ & 9140-5700-732 \\ & 9140-5700-732 \\ & 9140-5700-733 \end{aligned}$
MSD 200-01-076	Separation of milk or whey into skim milk and cream which are discharged under pressure. Sediment is ejected from the bowl at pre-determined intervals while the bowl is rotating at full speed.	Separation, clarification and standardization of milk; separation of whey. Minimum temp. is $77^{\circ} F ; 59^{\circ} \mathrm{F}$ for clarification.	Bowl speed- 4700 RPM Total bowl volume- 13.2 gal. Sediment holding space-3.32 gal. Capacities: Separation of milk/whey6605 gal./hr Clarification \& standardization of milkup to 9247 gal./ hr	Set B Set C Set C1 Set F	$\begin{aligned} & 9140-5700-731 \\ & 9140-5700-732 \\ & 9140-5700-732 \\ & 9140-5700-733 \end{aligned}$

	ゅ ○ら～ ぶ む む む む む	ゅ○ভи 	ल్ల～N～N oios ó亿炧 あぁぁぁ ゅ○ む む̈ む̈ む む
$\begin{aligned} & \frac{Z}{0} \\ & \frac{1}{2} \\ & \frac{U}{3} \\ & \frac{0}{a} \end{aligned}$			
	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \dot{1} \\ & \dot{C} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$		

This Page Intentionally Left Blank.

CHAPTER 1 - DESCRIPTION OF THE CONTROL COMPONENTS

INTRODUCTION.

This chapter discusses the control of the separation process through the components of the control cabinet.

1-1. COMPONENTS (Fig. 1-2).

The dairy separators discussed in this manual are controlled by an Allen-Bradley Programmable Logic Controller. This unit consists of 3 major components:

- Timer-Counter-Access Terminal (TCAT). a SLC 150 Programmable Controller (PLC).
- SLC 100 Relay Output Expansion Unit (EU).

To operate and control the separator, in addition to the above, the following components are provided:

- Speed Indicator
- Speed Measuring Device
- 4.5 amp Time Delay Fuse (250 VAC)
- Transformer
- Plug-in Relay
- 24 VDC Power Supply

Also provided are an assortment of push-button, indicator lights, selector switches, etc., that are required to operate the separator. Refer to chap. 3 for the wiring diagrams and bill of material.

1-2. PURPOSE AND FUNCTION.

CAUTION:

a If any of the process control units require replacement, it is essential that they be replaced with a component of the same part/model number.

- The timing unit shall be energized prior to separator start-up and remain energized until the separator bowl comes to a complete stop.

The purpose of the program is to provide a set of operating parameters (times) within which the separator and associated components may function. A selected event requires a certain amount of time to complete.

Different components of the system will open/close or energize/de-energize for pre-determined periods to accomplish the selected task. For example: With the separator in the milk separation mode the bowl opening/closing, filling and metering are all accomplished by valves, solenoids, etc. The opening and closing of these components for specific time periods allows water and product to flow into and out of the separator. These time intervals were pre-programmed at the factory, according to the operators specifications, into the EEPROM memory module (fig. 1-5, item 10). The PLC allows the factory to store this timing information and the operator to access and modify some of the times.

The operator may modify some time intervals through the TCAT. When modifying the process time (ref. para. 1-4 and chapter 2) it is imperative for the operator to be aware of the following: Some process timing may be changed to suit immediate requirements, this is however, an "overwrite" procedure only. Should power be removed/cut off; the preprogrammed times will replace the operators modified times. To avoid this circumstance, the EEPROM memory module nust be removed after the modified times are entered, thus preserving the operator's instructions. To further understand the control process, the definitions of a few terms are presented:

- Accumulated Time: As indicated through the TCAT Data Display window (figs. 1-3 \&
1-4) by timers and counters throughout the system. The data display shows process time in $1 / 10 \mathrm{th}$ second increments starting at 0 (zero), ascending to the pre-set time.
- Pre-set Time: As indicated thru the TCAT Data Display window (figs. 1-3 \& 1-4). This display shows the pre-determined time span stored in the EEPROM for any given event.
- Counter: Keeps count of the actual number of times a process has been accomplished. For example: A counter will monitor the number of partial de-sludgings that occur before a full de-sludging.
- Sequencer: The sequencer controls the "order" in which events will occur within a process.
- Address: An address is a number assigned to a function or component for the purpose of differentiating one component from another or one process from another.

In the following example (milk separation, partial de-sludging), the sequencer will initiate bowl closing and metering chamber filling. Refer to fig. 1-1. The timer will close the bowl, or ensure that the bowl is closed for 24 seconds (1) and energize the filling valve for 8 seconds (2). Ten seconds into process the metering valve is energized by compressed air for 8 seconds (3). Twelve seconds into this process, the sequencer will signal the bowl to open for 2.5 seconds using the collected water from the metering chamber to eject accumulated solids (4). (Note that this event may be modified).

1-3. CONTROL CABINET (Fig. 1-2).

The separator is controlled/operated thru a NEMA 12 stainless steel enclosure measuring 24.0 in . wide x 24.0 in . high $\times 8.0 \mathrm{in}$. deep. The control panel (front cover) contains the following:
A. TCAT display
B. Illuminated graphic panel (valve position and machine status lights)
C. Motor start/stop buttons
D. Power on/off buttons and indicators
E. CIP (clean in place) and process selector
F. Function selector (milk only)
G. Program start and manual de-sludging
H. Program stop (feed valve divert or close)
I. Flush water (whey only, program stop)
J. Speed indicator (RPM)

Figure 1-1. Sequence of Events.
(Typical)

Lastly, the sequencer will again energize the filling valve (for 40 seconds), 20 seconds into the process (5).

In summary, the sequencer activates the control component (valve, solenoid etc.) in pre-determined order and the timer regulates the time required to complete the process. The time indicated
 timing chart in chapter 2) indicates to the operator the function whose timing may be changed to suit immediate requirements. All functions indicated by \square may not be altered.

The control cabinct (interior) contains the following components:
K. SLC 150 Programmable Controller
L. SLC 100 Relay Output Expansion Unit
M. Fuse
N. Wire terminals (not all illustrated)
O. Speed measuring device
P. 24 VDC power supply
Q. Plug-in relay

Legend:

Figure 1-2. Control Cabinet. (Sheet 1 of 3)
(Front Cover, Inside)

\bigcirc
$\bigcirc \bigcirc$
\bigcirc

$\bigcirc \bigcirc$

Wiring and cabinet not shown for clarity
Figure 1-2. Control Cabinet.
(Sheet 2 of 3)

(Cabinet, Inside)

$08<N$

Wiring and cabinet not shown for clarity
Figure 1-2. Control Cabinet.
(Sheet 3 of 3)

1-4. TCAT (Fig. 1-3).

NOTE:
The following paragraphs provide a brief description of the TCAT
(Timer/Counter Access Terminal). Refer to the User's Manual (bulletin 1745) found inside the control cabinet for a detailed description of this component.

The TCAT is used in conjunction with the SLC 150 Programmable Controller (PLC) and the SLC 100 Relay Output Expansion Unit (EU).

With the SLC 150 PLC in the RUN mode, the TCAT provides the operator with access to counter, sequencer and timer data. This allows authorized personnel to monitor this data "on-line".

Some data in the PLC may be modified to suit specific requirements. A keyswitch prevents unauthorized modifications. With the keyslot in the vertical position the MONITOR mode is in effect. The key may be removed. With the key inserted and turned clockwise 90° horizontal the MODIFY mode is selected. In this mode the key cannot be removed.

To monitor or modify a function, the "address" must be accessed through the keyboard. The address display indicates the address number entered and the data display will show either the pre-set time or the accumulated time.

For Example (Fig. 1-4):

To access address 904 the operator will depress the ADDRESS pad (1) and the respective pads for the 904 address (2) on the keyboard (the number 9 will automatically appear; depress 0 and 4). Depress the ENTER pad (3). The numbers 904 will appear in the ADDRESS INDICATOR window(4). One of the following indicators will light (5): TME, CNT or SEQ indicating to the operator that the 904 address is either a timer, counter or sequencer. The PROT will light red (6) if the address is protected in the program; this means that the address cannot be modified. Shown in the DATA DISPLAY window (7) will be either the pre-set or accumulated time, depending on which indicator light (8) is lit. To change the indication, depress either the PRESET or ACCUM pads (9). Pre-set time is the pre-determined time span, stored in the EEPROM, that any given process will run. Accumulated time is displayed in $1 / 10$ th of a second increments starting at 0 (zero) and ascending to the pre-set time. Refer to chapter 2 for detailed TCAT access.

Figure 1-3. TCAT

Located on the back of the TCAT are listed ERROR CODES which will alert the operator to specific problems in the system or operating procedure. These codes are listed in the English and French languages.
-

The TCAT receives operating power from the SLC 150 PLC thru a 6.0 ft . interconnect cable.

Figure 1-4. TCAT Keypad.

1-5. PROGRAMMABLE CONTROLLER

(Fig. 1-5).
The dairy separators covered in this manual are primarily controlled thru an SLC 150 Programmable Controller (PLC). This unit contains the processor (CPU and capacitor-backed CMOS RAM memory), a power supply and $32 \mathrm{I} / \mathrm{O}$ ports. The number of I/O ports is increased to 44 through the SLC 100 Relay Output Expansion Unit (EU, discussed in para. 1-6). The $44 \mathrm{I} / \mathrm{Os}$ are broken down to include 20 inputs (1) and 12 outputs (2) in the PLC. There are 12 outputs in the EU, which has no input circuits but is connected to the PLC by a ribbon cable (3).

The PLC receives operating power thru \#14 AWG wires/terminals at the upper left corner of the terminal strip (4). This connection is pre-wired at the factory from the terminal strips to the PLC. Customer connection is required from system components to the terminal strip in the control cabinet. Refer to chapter 3 for wiring schematics.

Located in the middle right side of the PLC is an INPUT INDICATOR PANEL (5). This panel indicates the following diagnostics or indicators:

- DC Power- Indicates the PLC is energized and DC power is being applied. - PLC Run- Indicates the PLC is in the RUN mode.
- CPU Fault- Indicates the PLC has detected an error in either the CPU or memory. Operation is automatically halted.
- Battery Low- This is an option not available.
- Forced I/O- Indicates that one or more of the I/Os have been forced to an ON or OFF state.

Also located in the input indicator panel are the INPUT STATUS INDICATORS (6) which are 20 red LEDs, numbered 1 thru 10 and 101 thru 110. When an input circuit is energized, the corresponding status indicator will light. OUTPUT STATUS INDICATORS (7) are 12 red LEDs identified by the numbers 11 thru 16 and 111 thru 116. When a programmed output instruction is energized (on), the corresponding output status indicator will light and the corresponding output circuit will energize.

Located in the upper left corner of the PLC may be found the INPUT POWER FUSE (8). If line terminal voltage is present, but the DC power LED is not lit, the fuse may be blown. Refer to chapter 3 for wiring schematics.

After a power loss or brown out, the PLC may be restarted by selecting one of the following in the AUTO/MANUAL SWITCH (9):
a AUTO- Upon power-up, the PLC runs through its normal diagnostic tests, then automatically enters the RUN mode if the PLC was in RUN when powered down.

Figure 1-5. SLC 150 Programmable Controller.

- MANUAL- Upon power-up, the PLC will again accomplish its diagnostic tests but will not enter the RUN mode. To enter RUN the operator must select the AUTO mode.

The program designed for use in this application is stored in the EEPROM MEMORY MODULE (10).
NOTE:

It is recommended that the software and revision number be recorded for future reference.

The PLC and the TCAT are interfaced by a cable that connects to the COMMUNICATION PORT (11). This port may also be used to connect the PLC to a pocket programmer or a personal computer (IBM) interface converter. Both of these are optional items not supplied for this application, but are available from the PLC manufacturer.

Although not supplied for this application, a BACK-UP BATTERY ASSEMBLY (12) is available to safeguard PLC memory. A standard capacitor back-up is provided which provides memory back-up for 2 weeks at 30 C and 1 week at 60 C .

If the PLC is operated at temperatures above 50 C for extended periods, capacitor life cannot be guaranteed beyond 2 years. For operation under these conditions, installation of a battery back-up is recommended.

1-6. EXPANSION UNIT (Fig. 1-6).

The SLC 100 Expansion Unit is used in conjunction with the PLC to expand the number of available I/O circuits. Although the total number of circuits may be boosted to 112 , this application requires a total of $44 ; 12$ provided by the use of the expansion unit. The expansion unit (EU) has the same basic construction as the programmable controller (PLC), however, it does not have input circuits. The EU receives its operating power, from the PLC, thru wiring terminals (1) at the upper left side of the unit. The terminals, under a flip up cover, accept 2 \#14 AWG wires. The chassis ground is also located here. Located to the right of the incoming power terminals are 6 upper output circuits (2).

The 6 lower output circuits (3) are located on the bottom edge of the unit. These connections are pre-wired at the factory from the terminal strips to the EU. Customer connection is required from system components to the terminal strip in the control cabinet. Refer to chapter 3 for wiring schematics.

Located in the middle right side of the EU is a STATUS INDICATOR PANEL. This panel illustrates the following diagnostic indicators:

- DC Power (5)- Indicates the PLC is energized and $D C$ power is being applied.
- Output Status Indicators (6)- 12 red LEDs numbered 11 E thru 16 E corresponding to output contact wiring terminals 11E thru 16E (7). When a programmed output instruction is energized (on), the corresponding output status indicator will light and the corresponding output contact will close. Refer to Figure 1-7.

WARNING:

- Before power is turned on, ensure there is no maintenance being performed on the system. Lock the main power shut-off, per OSHA requirements, if maintenance is to be performed. High voltage is present in the separator system. Severe injury or death may result from electrocution.
- Check, using a voltmeter, for any residual electricity remaining in electrical components to avoid electrical shock.

Located behind the front cover will be found the INPUT POWER FUSE (8). If line terminal voltage is present but the DC power LED is not lit, it is possible the fuse has failed. The front cover may be removed by backing out the two screws on either side of the cover. Refer to chapter 3 for wiring schematics.

The EU is interconnected to the PLC by a RIBBON CABLE (9) entering the unit on the right side.

Figure 1-6. SLC 100 Relay Output Expansion Unit.

Both upper and lower wiring strips are numbered 11 E thru 16E. In order to avoid confusion it will be necessary to further identify each terminal as a separate entity.

This has been accomplished by assigning the upper terminal strip the number 2 (two); the lower strip number 3 (three). These numbers have been written as in fig. 1-7. The upper terminal strip connections are now numbered 211 E thru 216 E ; the lower connections 311E thru 316E.

Figure 1-7. EU Address Block Numbering. (Item \#7 in Fig. 1-6)

1-7. SPEED INDICATOR (Fig. 1-8).

The speed indicator is used to indicate the bowl speed. An electronic limit value device allows the operator to monitor the separator for decreased bowl speed. The bowl speed is indicated in RPMs (2); UPM is a German abbreviation.

A limit speed has been pre-set at the factory. During operation, the pre-set speed and the actual speed are compared. If the actual value exceeds the pre-set limit, the output relay opens. If the actual speed falls below the pre-set limit the output relay closes. The LED (1) indicates the limit value and will light up when the pre-set value is exceeded. The speed limit value is set using buttons in the rear of the unit. Refer to chap. 2, para. 2-19 for adjustment of the speed indicator.

LEGEND:

1. Light emitting diode (LED)
2. Digital display (four digit, 7 segment LED, 20 mm high)

Figure 1-8. Speed Indicator.

1-8. SPEED MEASURING DEVICE (Fig.

 1-9).The Speed Measuring Device (FSU-2 or WHEM) takes a signal from an N -type proximity switch inside the separator frame and relays it to the Speed Indicator (ref. para. 1-7) to record the RPM of the bowl. The input pulses are converted to an output current of $4-20 \mathrm{~mA}$ for acceptance by the speed indicator.

Figure 1-9. Speed Measuring Device.

1-9. ILLUMINATED GRAPHICS PANEL

(Fig. 1-10).
The graphic panel provides the operator with a visual "guide" to a limited number of separator system functions. Lights within the panel illuminate as some events occur. For example: when the process medium is feeding into the separator, the green indicator light in the feed line of the graphic panel will illuminate. During separator start-up, the green motor start/run light will first flash on and off while the separator is running up to speed and then remain illuminated after run speed has been attained. A de-energized indicator light will indicate a closed or non-functioning component. Refer to chap. 2, para. 2-18.

Figure 1-10. Illuminated Graphics Panel.

INTRODUCTION.

In Chapter 1 a description of the control system was presented. This chapter will provide the operator with the procedures required to operate the system and monitor/modify certain events.

2-1. CONTROLS AND INDICATORS.

The system is operated through a control cabinet. This cabinet contains most of the components that monitor and control system functions, including the PLC. Refer to chap. 1.

2-2. INITIAL PROCEDURES.

Perform the following before start-up of the separator:

NOTE:

Refer to the technical material provided by the manufacturer of the separator for detailed information concerning separator installation, operation and maintenance.

- Assemble and install the separator bowl.
- Check the height and assembly of the bowl. No components may be omitted or replaced with the same components of another bowl. Lock-rings have left hand thread. All "O" marks shall be radially in line. Ensure a thin coat of Darina grease has been applied to the sliding surfaces of the hydraulic system parts and the bowl lock ring.
- Verify that all protection devices, if any, are installed properly.
- Ensure that all components that move are free to do so.
- Verify that the area is clear of all unnecessary material and personnel.
a Inspect for leaks, liquid accumulations, loose or broken wires and missing components.
- Check the oil sight glass of the separator (lower section of frame). With the bowl stationary, the oil level shall be up to the upper third of the sight glass. Use only the grade of oil specified in the lubrication section of the separator manual.
- Ensure the brake is not applied.
- Ensure operating water, compressed air and product are supplied to the separator (refer to table 2-1).
a Check directional rotation of the bowl (clockwise when viewed from above).

TABLE 2-1.
WATER \& AIR PRESSURE

[^0]
2-3. STARTER CABINET (Figs. 2-1 \& 2-2).

Although the separator system is started and controlled through the timing unit discussed in chap. 1 , all electrical power is supplied thru the starter control panel remotely located from the separator system and briefly discussed here.

The starter cabinet for the MSD 300 machines (fig. 2-1) contains the following indicating/control components:

- Ampere meter- Constant display of the amps drawn during start-up and operation.
- Running Time Meter- Records the total run time accumulated on the machine.
a Motor Overtemp Stage \#1 \& 2 Indicators- Time \& temperature dependent indicators that light incrementally to display a motor over-heat condition.
- Over Current Indicator- Will light to indicate an excess current draw. If the draw reaches the pre-set limit the separator will automatically shut-down.
- Starting, Accelerating \& Running Indicators- Incremental indicators that will light sequentially during the start-up period. The Starting and Accelerating indicators will extinguish when the Running indicator lights, showing the machine is fully up to speed.
- Separator Stop Push-button- Will stop the separator.
- Alarm Silence- Will silence the malfunction alarms.
- Alarm Re-set- Will re-set the malfunction alarms.
- Main Power Shut-off- Energizes the entire system. A receptacle is provided to enable the operator to physically lock-out the system.

The starter cabinet for all other machines (fig. 2-2) contains the following indicating/control components:

- Running Time Meter- Records the total run time accumulated on the machine.
- Motor Overtemp Indicator- Displays a motor overheat condition.
- Ampere meter- Constant display of the amps drawn during start-up and operation.
- Main Disconnect Handle- Energizes the entire system. A receptacle is provided to enable the operator to physically lock-out the system.

2-4. ENERGIZING THE SYSTEM.

WARNING:

- Read and understand all Safety Notices in the separator manual before operation.
- Before power is turned on, ensure there is no maintenance being performed on the system. Lock the main power shut-off, per OSHA requirements, if maintenance is to be performed. High voltage is present in the separator system. Severe injury or death may result from electrocution.
- Ensure that the electrical system, including the separator and the starter cabinet, are properly grounded before applying electrical power.

CAUTION:

- Read and understand the technical manual provided with the separator before starting the system.
- Inspect all components and electrical connections to ensure all wiring is connected properly.

1A. To power-up the MSD 300 system, move the MAIN POWER SHUT-OFF selector switch (1A, fig. $2-1$) to the ON position (located in the green area of the handle).

1B. To power-up all other separators place the MAIN DISCONNECT HANDLE (1B, fig. 2-2) in the power-on position.
2. Energize the Timing Unit (1, fig. 2-4). Ensure all utility valves are open and the feed valve is in the closed position.

Figure 2-1. Starter Controls for MSD 300 Machines.

AMPERE METER

RUNNING TIME METER

CABINET FRONT

OVERTEMP INDICATOR LIGHT

MAIN POWER SHUT-OFF

CABINET SIDE

Figure 2-2. Starter Controls for MSD
90, 130, 170, 200, 250 Machines.

2-5. ENERGIZING THE TIMING UNIT (Run/Auto Mode, the normal operating mode).

REQUIRED CONDITIONS:

- SLC 150 PLC in the RUN mode.
- Manual/Auto switch set at AUTO.

When the system is initially energized the TCAT/PLC will undergo a series of diagnostic tests and then display the lowest timer/counter/sequencer address number in the program; 901.

The example illustrated in figure 2-3 shows a typical power-up display.

Address 901 in this example is an unprotected Timer. The following will occur when the unit is energized:

The TCAT/PLC will go through it's diagnostic tests, then automatically scan addresses 901 thru 932. The display will show 901 which is the first (and lowest) address used.

(Either TME,CNT or SEQ indicator will light)

Figure 2-3. TCAT Display in Run/Auto Mode During Start-Up.

NOTE:

- Various abbreviations and symbols appear in the DATA display to indicate the timer, counter and sequencer instructions. Refer to Table 2-7 for a brief summary.
- Procedural errors (and other errors) may occur when operating the TCAT/PLC. Refer to table 2-6 for an explanation of Error Codes. A listing of error codes also appears on the back of the TCAT module and on the key/ID tag.
- The TCAT keyboard is inoperative while the PLC is scanning to an address used in the program.

To move to the next instruction depress the NEXT keypad (fig. 2-5). If the NEXT keypad is activated while the PLC is still scanning, the display will again show the addresses. If, for example, the scan stopped at address 929 , the display would show 930 , 931 and then stop at 932 (the highest address) in the same manner as illustrated in fig. 2-3.

Any time the NEXT key is activated after the scan is completed, the TCAT shows (in sequence) only those instructions you used in the program. In this example, activating the NEXT keypad would display instructions 901 thru 932.

2-6. STARTING THE PROCESS (All products, Fig. 2-4).

CAUTION:

The Timing Unit shall be energized prior to start-up and will remain energized until the bowl comes to a complete stop.

NOTE:
The bowl opening timer has been entered into the EEPROM memory at 2 seconds. The amount of the partial shoot is controlled by the piston metering valve in the operating water line. An increase of water injection volume will increase the amount of partial de-sludging.

1. Press Motor Start push-button (2). The start/run light (3) will flash until the motor has come up to speed. During the motor start period, only the motor stop push-button may be used, All other push-buttons and controls are disabled. When the bowl has come up to speed (refer to the separator manual for starting times and RPMs) the operating water line will seal the bowl. The start/run indicator will now be lit (no longer be flashing).
2. Using the Product Selector Switch (4) select Milk, Whey or C.I.P. Using the Process Selector Switch (5), select Sep., Stand. or Clar.

When the program is performing a de-sludging, the Timing Unit will continue until the cycle is completed.

In the event of power failure, the Motor Run relay will open, de-activating the motor. Once power is re-established, the Motor Start sequence will have to be re-activated at the timing unit by pressing the motor start button (2).

2-7. PROCESSING MILK (Fig. 2-4). NOTE:

 Milk processing will access milk partial de-sludging sequencing. Refer to table 2-2.

1. With Product Selector Switch set to Milk. (4), push Program Start Button (6A).
2. Program Start (6A) will initiate a partial de-sludging. Using the Process Selector Switch (5) choose either Sep., Stand. or Clar. If Sep. is selected, the cream control valve will close or divert the cream to the cream tank. If Stand. or Clar. are chosen, the cream control valve will open, recombining part or all of the cream with skim (the flush water switch is disabled).
3. Adjust the skim back-pressure for foam-free discharge and cream back-pressure for cream concentration. Increase cream back-pressure for thicker cream and decrease the back-pressure for thinner cream.
4. For standardization (stand.), adjust surplus cream valve to remove desired amount of cream, maintaining standardized cream concentration.

Program Stop (6B) will close or divert the Feed and Cream Control Valve and stop the de-sludging sequence.

Program Start (6A) will initiate the next de-sludging, reset the process timer and open the feed valve to the separator. Adjust partial de-sludging volume as required.

CAUTION:

Do not idle the separator with the bowl open or empty of product. Gasket failure and coating of interior bowl parts will occur.
5. Monitor separator function during process run and adjust valving, if required, for back-pressure and cream concentration.
6. Adjust time between partial de-sludgings using address 901 to clean sediment holding space. Monitor solids discharge to ensure excessive solids are not building up in the bowl.

NOTE:

Immediately de-sludge entire contents of bowl and flush with water at the end of processing and prior to C.I.P.

7. Refer to para. 2-13 for C.I.P. and shut-down.

2-8. PROCESSING WHEY (Fig. 2-4).

NOTE:

Whey processing will access whey partial and full de-sludging sequencing. Refer to table 2-3.

1. Set Product Selector Switch (4) to whey. Adjust desludging frequency, adjust partial de-sludging volume. Adjust partial/full counter (address 903, table 2-3) based upon separable whey solids in product feed and flow rate for whey with heaviest solids loading.
2. Depress Program Start (6A) to initiate a full de-sludging on initial start and a partial de-sludging on subsequent starts (until 903 pre-set is attained).

Program Stop (6B) will close or divert the feed valve, stop de-sludging sequencing and cream displace between desludgings. Pushing the Program Start button (6A) will initiate the full de-sludge again and will reset all applicable timers and counters to zero.
3. Adjust whey back-pressure valve for foam free discharge and cream back-pressure for cream concentration. Increase cream back-pressure for thicker cream. Cream is to be discharged to open balance tank at separation.
4. During normal operation and between de-sludgings, the cream control valve will briefly open for a few seconds to discharge some cream from the separator between displacement and de-sludging. Use timer (address 913, table 2-3) to adjust the occurrence interval of this process (usually 2-3 occurrences).
5. Timer (address 914, cream displace ON, table 23) should be adjusted to thin the whey cream to approximately $20-30 \%$ concentration.
6. During the partial de-sludging sequence the cream will be displaced prior to a de-sludging (without water flush during a partial de-sludging). Adjust timer (address 908, table 2-3) to thin cream to $10-20 \%$ concentration.
7. Adjust partial bleed timer (address 909, table 23) to ensure the discharged cream is not heavier than 45% concentration when normal CPV air pressure is applied.

NOTE:

When using warm water to remove solids from the disc stack or as an aid in cream discharge, the water should be approximately the same temperature as the whey.
8. During full de-sludgings, adjust timer (address 925) to discharge all the cream prior to the bowl opening. Water flush adjustment (address 928, table 2-3) may be adjusted to aid discharging the cream and removing solids from the disc stack. The bleed timer (address 929, table 2-3) can be adjusted to re-establish the cream concentration.
9. Monitor the operation to ensure correct operation.

NOTE:

Immediately de-sludge entire contents of bowl and flush with water at the end of processing and prior to C.I.P.
10. Refer to para. 2-13 for C.I.P. and shut-down.

Figure 2-4. Control Cabinet, Separator Controls.

2-9. MONITORING A TIMER INSTRUCTION (Fig 2-5).

NOTE:

- Refer to tables 2-2 through 2-5 for a description of separator functions and function times.

- The index numbers on figure 2-5 reflect the procedural steps in para. 2-9 with the same number.

In the following example, address 905 (partial bowl open adjustment) will be used to illustrate how a timer may be monitored by the operator. For this purpose address 905 will be called a timer with a PR value of 2.0 (seconds) and is not protected in the program.

1. Energize the TCAT/PLC per para. 2-5.
2. Ensure Keyswitch is in the Monitor mode. The Address Display will show address 901 (the lowest in the program).
3. Depress the PRESET keypad. The TME and PRESET LEDs will light. The Address Display will show the current address of 905 while the Data Display indicates the pre-set time value.
4. Depress the ACCUM keypad. The TME and ACCUM LEDs will light. The Address Display will show the current address of 905 while the Data Display indicates the accumulated time value.

NOTE:

- All process timers and counters will automatically reset after 10 seconds.
- If the ACCUM keypad is depressed twice, an error code will appear in the data display. Refer to table 2-6 for corrective action.

3. Depress the ADDR key. The 0 \& 1 in the Address Display will be replaced with flashing dashes. This indicates a request for the entry of a new address.
4. Using the keypad, enter 0 \& 5 . Depress Enter Key. The Address Display will show address 905 , the Data Display will show .0. The TME and ACCUM LEDs will light. This indicates to the operator that address 905 is a Timer (TME).

If the Timing Unit is in mid-process, the operator will have to wait until the chosen address "comes around" in the cycle to monitor the event. It is possible to bring up the desired event by depressing the program start button (6A, fig. 2-4), which will initiate the de-sludge program from it's beginning.

Figure 2-5. Monitoring a Timer Instruction.

2-10. MONITORING A COUNTER INSTRUCTION (Fig 2-6).

NOTE:

> Refer to tables 2-2 through $2-5$ for a description of separator functions and function times.
> The index numbers on figure 2-6 reflect the procedural steps in para. 2-10 with the same number.

In the following example, address 901 will be used to illustrate how a function may be monitored by the operator. For this purpose address 901 will be called a counter with a PR value of 20 (minutes) and is not protected in the program.

1. Energize the TCAT/PLC per para. 2-5.
2. Ensure Keyswitch is in the Monitor mode. The Address Display will show address 901 (the lowest in the program).
3. Depress the PRESET keypad. The CNT and PRESET LEDs will light. The Address Display will show the current address of 901 while the Data Display indicates the pre-set time value.
4. Depress the ACCUM keypad. The CNT and ACCUM LEDs will light. The Address Display will show the current address of 901 while the Data Display indicates the accumulated time value.

NOTE:

- All process timers and counters will automatically reset after 10 seconds.
a If the ACCUM keypad is depressed twice, an error code will appear in the data display. Refer to table 2-6 for corrective action.

3. Depress the ADDR key. The 0 \& 1 in the Address Display will be replaced with flashing dashes. This indicates a request for the entry of a new address.
4. Using the keypad enter $1 \& 4$. The Address Display will show address 901, the Data Display will show 0 . The CNT and ACCUM LEDs will light. This indicates to the operator that address 901 is a Counter (CNT).

If the Timing Unit is in mid-process, the operator will have to wait until the chosen address "comes around" in the cycle to monitor the event. It is possible to bring up the desired event by depressing the program start button (6A, fig. 2-4), which will initiate the de-sludge program from it's beginning.

Figure 2-6. Monitoring a Counter Instruction.

2-11. MODIFYING A TIMER INSTRUCTION (Fig 2-7).

NOTE:

- Refer to tables 2-2 through 2-5 for a description of separator functions and function times.

> The index numbers on figure 2-7 reflect the procedural steps in para. 2-11 with the same number.

In the following example, address 905 will be used to illustrate how a timer function may be modified by the operator. For this purpose address 905 will be called a timer with a PR value of 2.0 (seconds) and is not protected in the program.

1. Energize the TCAT/PLC per para. 2-5.
2. Select the Modify mode at the key-switch. The Address Display will show address 901 (the lowest in the program).

If the Timing Unit is in mid-process, the operator will have to wait until the chosen address "comes around" in the cycle to monitor the event. It is possible to bring up the desired event by depressing the program start button (6A, fig. 2-4), which will initiate the de-sludge program from it's beginning.
3. Depress the ADDR key. The 0 \& 1 in the Address Display will be replaced with flashing dashes. This indicates a request for the entry of a new address.
4. Using the keypad, enter $0 \& 5$. Depress Enter Key. The Address Display will show address 905, the Data Display will show .0. The TME and ACCUM LEDs will light. This indicates to the operator that address 905 is a Timer (TME).
5. Depress the PRESET keypad. The TME and PRESET LEDs will light. The Address Display will indicate 905 and the Data Display will indicate that the pre-set value is 2.0 .
6. Depress the PRESET keypad again. The 2.0 in the Data Display will be replaced by flashing dashes, indicating to the operator that a new pre-set value may be entered.
7. Using the keypad, enter 2.5 (arbitrary number for this example) and ENTER keypad. The Data Display will show 2.5 indicating that the pre-set value has been changed.
8. Depress the ACCUM keypad. The TME and ACCUM LEDs will light. The Address Display will indicate 905.
9. Move keyswitch to monitor position. Monitor process for proper operation.

NOTE:

- All process timers and counters will automatically reset after 10 seconds.
- If the ACCUM keypad is depressed twice, an error code will appear in the data display. Refer to table 2-6 for corrective action.

(3)

Figure 2-7. Modifying a Timer Instruction.

2-12. MODIFYING A COUNTER INSTRUCTION (Fig 2-8).

NOTE:

- Refer to tables 2-2 through 2-5 for a description of separator functions and function times.
- The index numbers on figure 2-8 reflect the procedural steps in para. 2-12 with the same number.

In the following example, address 901 will be used to illustrate how a counter function may be modified by the operator. For this purpose address 901 will be called a counter with a PR value of 20 (minutes) and is not protected in the program.

1. Energize the TCAT/PLC per para. 2-5.
2. Select the Modify mode at the key-switch. The Address Display will show address 901 (the lowest in the program).

If the Timing Unit is in mid-process, the operator will have to wait until the chosen address "comes around" in the cycle to monitor the event. It is possible to bring up the desired event by depressing the program start button (6A, fig. 2-4), which will initiate the de-sludge program from it's beginning.
3. Depress the ADDR key. The 0 \& 1 in the Address Display will be replaced with flashing dashes. This indicates a request for the entry of a new address.
4. Using the keypad, enter 0 \& 1 . Depress Enter Key. The Address Display will show address 901 , the Data Display will show .0 . The CNT and ACCUM LEDs will light. This indicates to the operator that address 901 is a Counter (CNT).
5. Depress the PRESET keypad. The CNT and PRESET LEDs will light. The Address Display will indicate 901 and the Data Display will indicate that the pre-set value is 20 .
6. Depress the PRESET keypad again. The 20 in the Data Display will be replaced by flashing dashes, indicating to the operator that a new pre-set value may be entered.
7. Using the keypad, enter 22 (arbitrary number for this example) and ENTER keypads. The Data Display will show 22 indicating that the pre-set value has been changed.
8. Depress the ACCUM keypad. The CNT and ACCUM LEDs will light. The Address Display will indicate 901.
9. Move keyswitch to monitor position. Monitor process for proper operation.

NOTE:

- All process timers and counters will automatically reset after 10 seconds.
a If the ACCUM keypad is depressed twice, an error code will appear in the data display. Refer to table 2-6 for corrective action.

Figure 2-8. Modifying a Counter Instruction.
TABLE 2-2.
FUNCTION TIMES
(SEPARATION/STANDARDIZATION OF MILK)

FUNCTION
 ADDRESS

901.

904
905
907
910.
$911 .$.
912.
918.
$\ldots \ldots .$.
922.
$\ldots \ldots .$.
923.
925.
926.

* If different from pre-set time.

FUNCTION DESCRIPTION

FUNCTION
ADDRESS
NUMBER
$901 .$.
903.
904.
905.

918.
922
ภ్ర
$925 \ldots F u l l ~ C r e a m ~ D i s p l a c e ~ F i n e ~ A d j u s t m e n t ~ . ~$
Solid Discharge Valve On
Full - Flush Water (0-12 sec.) Full Bleed Fine Adjustment Program Identification.
Bowl Close First Time
Every 59 sec . for 1 sec . bowl close valve is energized Time delay after de-sludging begins and before the solid

Partial/Full Counter...
C.I.P. Counter

$$
\begin{aligned}
& \text { a motor run signal .. } \\
& \text { Everv } 59 \mathrm{sec} \text {. for } 1 \mathrm{~s}
\end{aligned}
$$

discharge valve energizes .. Flush valve fine adjustment timer during full de-sludging

* If different from pre-set time.

Process Timer...........

Partial Bowl Open Adjustment

Turbidity Delay After Desludging
Delay time between start of de-sludge and recognition of anoter
Amount of time the bowl close valve is energized after receiving

TABLE 2-4.
DE-SLUDGING TIMES FOR MSD \& WATER SAVING MACHINES

[2] OUTPUT 5.1 TO BE SET AT 2.0 SECONDS (REFER TO SEPARATOR MANUAL FOR PARTIAL BOWL ADJUSTMENT)
DE－SLUDGING TIMES FOR MSD \＆WATER SAVING MACHINES（cont＇d）

的血血的 INDICATES THIS TIME IS ADJUSTABLE WITHIN 1 SECOND USING THE TCAT
［1］NOT USED WITH WATER SAVING（NON MSD）MACHINES
［2］OUTPUT 5．1 TO BE SET AT 2．0 SECONDS（REFER TO SEPARATOR MANUAL FOR PARTIAL BOWL ADJUSTMENT）
TABLE 2-5.
DE-SLUDGING TIMES FOR NON-WATER SAVING MACHINES

DE-SLUDGING TIMES FOR NON-WATER SAVING MACHINES (cont'd)

[1] NOT USED ON MSD 50/60 [2] ALL PROCESS VALVES PULSED DURING C.I.P.

2-13. TYPICAL C.I.P. CLEANING AND SHUT-DOWN (Fig. 2-9).

Proceed with the following to perform a clean-inplace of the separator system.

WARNING:

- Before power is turned on, ensure there is no maintenance being performed on the system. Lock the main power shut-off, per OSHA requirements, if maintenance is to be performed. High voltage is present in the separator system. Severe injury or death may result from electrocution.
- Read and understand the Warnings and Cautions in the separator manual before operation.
- The separator shall not be exposed to chlorine in either a cleaning solution or a sanitizing agent.

NOTE:

- Refer to the technical material provided by the manufacturer of the separator for detailed information concerning separator installation, operation and maintenance.

1. De-activate the feed valve by stopping the program (1).
2. Make all necessary connections to perform a C.I.P.
3. Select C.I.P. (3) for either milk or whey.
4. Flush the separator and associated piping with water. If processing whey, the rinse water should be the same temperature as the product. Make proper preparation to catch/dispose of the waste water.
5. Perform three manual de-sludgings (5) of the separator at four to six minute intervals while water rinsing the system.
6. Upon completion of the water rinse, connect the C.I.P. discharges to recirculate the C.I.P. solution.
7. Circulate a caustic solution of 1.8 to 2.0% strength at a temperature of $165^{\circ} \mathrm{F}$ for fortyfive minutes (minimum). Perform one manual de-sludge (7) after three minutes of circulating time and thereafter every ten minutes. This procedure is automatic when the timing unit is in the C.I.P. mode (adjust timer 904, tables 2-2 \& 2-3, as required).

NOTE:

Amount of solution required will vary according to the size and capacity of the system.
8. Rinse the caustic solution from the system using water and perform three manual desludgings (8) at four to six minute intervals.
9. Circulate an acid solution with a ph of 4.5 and a temperature of $160^{\circ} \mathrm{F}$ for thirty minutes. Perform one manual de-sludge (9) after three minutes of circulating time and thereafter every twelve minutes (for a total of 3 manual de-sludgings made during a 27 minute period).
10. After the acid rinse has been completed, flush the system with water making one manual de-sludge (10) while rinsing.
11. De-activate all pumps used for C.I.P. cleaning.
12. De-activate program at control cabinet by depressing the motor stop button (13). The bowl will open fully for ten seconds automatically de-activating the run program. The bowl will remain open.

CAUTION:

The timing unit shall be energized prior to separator start-up and remain energized until the separator bowl comes to a complete stop.

WARNING

Do not loosen or remove any part of the separator or feed and discharge lines before the bowl has stopped completely. The bowl will not be at rest until it can be observed as being stopped through the inspection cover.
14. After the bowl has come to a complete stop; de-activate timing unit (14) at the control cabinet. Use brakes to stop the bowl only if necessary. It is recommended that the bowl come to a stop by slowly winding down.

CAUTION:

When using hot water (bath or spray) to clean, ensure the water temperature does not exceed limitations or damage to component/material may occur.
15. Wash the external surfaces of the separator.
16. Turn off utilities.

Legend:
 Indicator Light

Push-button

Figure 2-9. Separator Controls (partial).

2-14. TROUBLESHOOTING TCAT DISPLAYS.

During initial start-up and when energizing the Timing Unit for subsequent starts, certain errors may be encountered.

If the Timing Unit is energized with the selector switch in the Run/Man mode, in a mode other than run or without a user program, the TCAT will advise the operator through indications in the Address and Data Displays. Refer to the following paragraphs for troubleshooting these errors.

NOTE:

Refer to table 2-6 for additional TCAT error codes and table 2-7 for Instruction Symbols.

2-14.1. ENERGIZING THE TIMING UNIT (Run/Man Mode).

REQUIRED CONDITIONS:

- SLC 150 PLC in the RUN mode.
- Manual/Auto switch set at MAN.

When the system is initially energized the TCAT/PLC will undergo a series of diagnostic tests and then display:

Figure 2-10. TCAT Display in Run/Man. Mode During Start-Up.

To clear this error code, turn the PLC AUTO/MAN switch to the AUTO mode (ref. fig. 1-5, item 9). The TCAT will then automatically return to address 901.

2-14.2. ENERGIZING THE TIMING UNIT (In a mode other than RUN).

REQUIRED CONDITIONS:

- SLC 150 PLC in a mode other than RUN.

When the system is initially energized the TCAT/PLC will undergo a series of diagnostic tests and then display:

Figure 2-11. TCAT Display in a Mode Other Than RUN.

To clear this error code a Pocket Programmer (not normally supplied) or the assistance of a trained and qualified service technician is required.

2-14.3. ENERGIZING THE TIMING UNIT (Without a user program in memory).

REQUIRED CONDITIONS:

- PLC does not have a user program in memory.
- The program does not have any tim$\mathrm{er} /$ counter/sequencer instructions.

When the system is initially energized the TCAT/PLC will undergo a series of diagnostic tests, scan addresses 901 thru 932 and then display:

Figure 2-12. TCAT Display Without a Program in Memory

To clear this error code a Pocket Programmer (not normally supplied) or the assistance of a trained and qualified service technician is required.

TABLE 2-6. TCAT ERROR CODES

ADDRESS DISPLAY DATA DISPLAY | EXPLANATION |
| :--- |
| Processor is not in the RUN |

* These errors indicate that the wrong data was entered or an invalid procedure was attempted. Remedy: Press the cancel key, which returns the display to the point it was before the error was made.

TABLE 2-7. DISPLAY INSTRUCTION SYMBOLS.
$\begin{array}{ll}\text { DATA DISPLAY } & \text { EXPLANATION } \\ \Gamma \measuredangle \square & \text { Retentive On-Delay timer instruction. }\end{array}$
$\Gamma \leftarrow \vdash \quad$ Retentive Off-display timer instruction.

Sequencer output instruction. Time
 driven. The last two digits (in this case, zeros) indicates the sequencer group number.
Sequencer input instruction. Event
driven. The last two digits (in this
case, 07) indicates the sequencer
group number.

This is a prompt message applying to address group numbers. It asks the operator to enter a group number.

This is a prompt message applying to sequencer instructions. It asks you to enter the sequencer step number

2-15. MALFUNCTIONS INDICATED ON THE ILLUMINATED GRAPHICS PANEL

 (Fig. 2-13).The following malfunction indications may be indicated on the Graphics Panel during operation:

1. Cooling water indicator - This light will flash on and off if if there is a loss or drop in flow of the cooling water supplied to MSD 300 separators equipped with a motor cooling system.
2. Motor over-temperature indicator (TE) Should the separator motor experience an over-temperature condition, this indicator will flash on and off and shut-down the separator.
3. Bowl Open Indicator - This indicator will flash if the bowl fails to shoot indicating that the bowl did not eject some sediment causing an increase in amperage draw. Note that the bowl close indicator light will flash for 1 second every 59 seconds to maintain bowl close water.
4. Slip Speed - This indicator will flash if the bowl speed has dropped too low for separation to occur properly. Refer to para. 219.

2-16. ADJUSTING SPEED INDICATOR (Fig. 2-14).

NOTE:

Refer to chap. 1, paras. 1-7 and 1-8 for a description of the speed indicator and speed measuring device.

The speed indicator has been adjusted at the factory to the maximum bowl speed of the separator (according to the name plate), corresponding to a 20 mA input. To re-adjust the unit, proceed as follows:

1. Switch on speed indicator.

WARNING:

Remove electrical power from the speed measuring device before proceeding.
2. Remove the measuring line of the speed measuring device from the measuring input of the speed indicator (+ and - ,if connected, fig. 2-14).
3. Install the adjusting bridge (3) per fig. 214.
4. Turn the course adjustment trimmer (5), slowly, to + (plus) or - (minus) until the digital display (2) on the front panel approximates the desired speed (fig. 1-8).

Figure 2-13. Illuminated Graphics Panel (Malfunction Indications).

1 \& 2. Not illustrated. Refer to fig. 1-8
3. Adjustment Bridge
4. Measuring input $4-20 \mathrm{~mA}$
5. Coarse adjustment trimmer
6. Fine adjustment trimmer
7. Limit value output
8. Auxiliary voltage $110 / 220$ VAC (change over using wire bridges.
9. Limit value adjuster

Figure 2-14. Speed Indicator (Adjustment).

NOTE:
The speed indicator is manufactured in Germany. The word "JUSTAGE" that appears on the back of the unit means $A D$ JUSTMENT.
5. Turn the fine adjustment trimmer (6), slowly, to + (plus) or - (minus) until the digital display (2) on the front panel indicates the desired speed value. The unit will display " 0 " on the display panel (Fig. 1-8).
6. Remove the adjusting bridge and re-connect the measuring line (+ and -).
7. Set the limit value adjuster to approximately $50-100$ RPM below the bowl speed. Adjustment is now complete.

Deviations of the displayed value from the rated bowl speed on the separator name plate may be corrected by re-adjusting the trimmer of the speed measuring device while both the separator and the measuring device are operating.

INTRODUCTION.

The following pages provide detailed schematics depicting the wiring of the separator system. It must be understood that these diagrams are of the wired connections inside the control cabinet. Making some of these connections is the responsibility of the operator, specifically the component to terminal strip connections. Operator responsible connections are indicated as such.

Included in this chapter is the parts list (bill of material) calling out the components used in the control cabinet.

This Page Intentionally Left Blank.

TABLE 3-1.
 BILL OF MATERIAL WIRING DIAGRAM 9128-5900-114

SEQUENCE DESCRIPTION MANUFACTURER PART NO. QTY.

SEQUENCE DESCRIPTION MANUFACTURER PART NO. QTY.

APPENDIX

INTRODUCTION.

The Appendix contains information supplementary to the main body of text in this manual. Provided in the appendix are the following:

- Glossary of Terms and Abbreviations - An explanation of the abbreviations and a description of the terms or phrases used throughout the text.
a Symbols - A listing of symbols and their meanings as used on manual schematics.
- Conversion Factors - Reference tables provided to aid the operator in calculating volume, weight, metric conversions etc.

This Page Intentionally Left Blank.

Bar

A measure of pressure ($14.7 \mathrm{lbs} . / \mathrm{sq} . \mathrm{in}$.)

Bowl:

The internal, rotating section of the separator where the separation of light phase from heavy phase with simultaneous removal of solids takes place.

Check Valve:

Prevents the reversal of flow direction through a line. The pressure of the flowing medium keeps the valve open, with a reversal of flow closing it.

Centripetal Pump:

The pump fixed to the hood of the separator which discharges the light or heavy phase under pressure.

Clarification:

The process used to remove solids from a single liquid.

CMOS RAM

Complimentary Metal Oxide Semiconductor Random Access Memory

CPU

Central Processing Unit

Control Valve:

Used to regulate or throttle the medium.

Displacement Water:

Water used to displace the light phase (cream) in the bowl prior to desludging.

Divert Valve or CIP line:

Employed where the valve is to be normally open or completely closed to permit a straight, full flow, no flow at all or a diverted flow.

EEPROM

Electrically Erasable Programmable Read Only Memory

Flush Water:

Water introduced into the bowl to clean the disc set and displace the light phase prior to a de-sludging.

GPM

Gallons Per Minute
1/O
Input/Output
$K G / C M^{2}$
Kilograms per Centimeter Squared
Lb.
Pound
LED:
Light Emitting Diode
LPM
Liters Per Minute
mm:
Millimeter
N.C.

Normally Closed

N.O.

Normally Open

Operating Water:

The water used to hydraulically operate the sliding piston for opening and sealing the bowl.
$\triangle \mathrm{P}$:
Delta pressure (differential pressure).

PSI

Pound-force per Square Inch ($\mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}$)
PSIG
Pound-force per Square Inch Gauge

RAM

Random Access Memory

S.S.:

Stainless Steel

Sealing Lip:

The raised area of the sliding piston which seals against the gasket and bowl top to prevent solids or medium from escaping from the bowl.

Separating Zone:

The region between the light and heavy phase when being separated.

Shoot (Desludging):

The action of the bowl opening and ejecting the solids during the desludging cycle.

Sliding Piston:

Situated in the bowl bottom, it rotates at the same angular velocity as the other bowl parts but can be moved axially. It moves downwards and opens the discharge ports in the bowl bottom during desludging.

Solids:

The solids collected in the bowl and removed via the discharge ports during the desludging cycle.

Solids Tank:

The tank into which the separator solids are discharged.

TCAT:

Timer/Counter Access Terminal

ELECTRICAL SYMBOLS

AMMETER: A

ANNUNCIATOR: | |
| :---: |
| 0 |
| 0 |
| 0 |

CONDUCTOR, ASSOCIATED OR FUTURE:

CONDUCTORS; NOT CONNECTED:

CONDUCTOR, JUNCTION OF CONNECTED PATHS:

CONTACTOR:

NORMALLY OPEN CONTACT:

NORMALLY CLOSED CONTACT:

NORMALLY CLOSED CONTACT WITH TIME DELAY OPENING:

FUSE:

GFCI (GROUND FAULT CIRCUIT INTERRUPTER):

GROUND:

COIL OPERATING INDICATING LIGHT:

FLUORESCENT LIGHT:

MOTOR:

OUTLET:

OVERLOAD, THERMAL ELEMENT ACTUATING DEVICE:

OVERTEMPERATURE RELAY FOR MOTOR (OTR):

P.C. INPUT:

P.C. OUTPUT:

SOLENOID:

LIMIT SWITCH, NORMALLY CLOSED (N.C.):

SPACEHEATER:

FLOAT SWITCH, CLOSING ON RISING LEVEL:

FLOAT SWITCH, OPENING ON RISING LEVEL:

PRESSURE SWITCH, CLOSING ONRISING PRESSURE:

PRESSURE SWITCH, OPENING ON RISING PRESSURE:
0.10

FLOW SWITCH, CLOSING ON INCREASING IN-FLOW:

FLOW SWITCH, OPENING ON INCREASING IN-FLOW:

TEMPERATURE SWITCH (THERMOSTAT) CLOSING ON RISING TEMPERATURE

TEMPERATURE SWITCH (THERMOSTAT) OPENING ON RISING TEMPERATURE:

PUSH-BUTTON SWITCH, NORMALLY OPEN:

PUSH-BUTTON SWITCH, NORMALLY CLOSED:

$$
010
$$

PUSH-BUTTON SWITCH, NORMALLY CLOSED MUSHROOMHEAD:

SELECTOR SWITCH, ROTATED IN ONE OR MORE POSITIONS:

SELECTOR SWITCH, WITH SPRING RETURN:

TERMINAL:

TERMINALBOARD:

THERMISTERS IN MOTOR:

CONTROL TRANSFORMER, SINGLE PHASE:

กTT
CURRENTTRANSFORMER:

REMOTE:

RUNNING TIME METER:

VARISTOR OR RC SUPPRESSOR:

CIRCUIT BREAKER, 3 POLE WITH THERMAL AND MAGNETIC TRIP CIRCUIT:

CIRCUIT BREAKER, 3 POLE WITH MAGNETIC TRIP CIRCUIT:

This Page Intentionally Left Blank.

Multiply	By	To Obtain
Tons (metric) $10^{3} \ldots$. KilogramsTons (metric) 2205......... Pounds		
Tons (short) 2000........... Pounds		
Tons (short) 32000......... Ounces		
Tons (short) 907.18486... Kilograms		
Tons (short) 2430.56....... Pounds (troy)		
Tons (short) 0.89287....... Tons (long)		
Tons (short) 29166.66..... Ounces (troy)		
Tons (short) 0.90718....... Tons (metric)		
Tons of water/24 hrs. \qquad 83.333......... Pounds water/hr. Tons of water $/ 24 \mathrm{hrs}$. \square 0.16643 \qquad Gallons/min. Tons of water/24 hr. \qquad 1.3349 \qquad Cu. ft./hr.		
Watts 1.341×10^{-3}.. Horse-powerWatts $0.01434 \ldots \mathrm{Kg}$. -calories/min.		
Watts.......................... 103 ${ }^{-3}$........... Kilowatts		
Watt-hours 3.415............ British Thermal UnitsWatt-hours 2655......... Foot-pounds		
Watt-hours 1.341×10^{-3}.. Horse-power--hours		
Watt-hours 0.805.......... Kilogram-calories		
Watt-hours 367.1.......... Kilogram-meters		
Watt-hours 10⒊........... Kilowatt-hours		

/techdoc1/rwg/PLC.final

All components and parts may be obtained through Centrico at the following address. Please reference the item part number and the project identification information found in the front matter of this manual. Copies of this technical manual are also available, at a nominal charge.

All components and parts may be obtained through Centrico at the following address. Please reference the item part number and the project identification information found in the front matter of this manual. Copies of this technical manual are also available, at a nominal charge.

[^0]: MSD 90, 130, 170, 200 \& 250

 - Operating Water Pressure with bowl closing water ON- 35 PSIG
 - Air Pressure- 60 PSIG

 MSD 300-01-777

 - Operating Water Pressure with bowl closing water ON- 35 PSIG
 - Air Pressure- 60 PSIG
 - Motor Cooling Water - 1 GPM @ 60 ${ }^{\circ} \mathrm{F}$

